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1. Introduction

Coulomb gauge is a suitable choice for investigating thdicement phenomenon, as in this
gauge the Gribov-Zwanziger scenario becomes distinctiynprent: the temporal component of
the gluon propagator provides the long range confining pialemwhereas the spatial propagator is
infrared suppressed [1]. On the other hand, traditionalietuof the heavy quark sector of quantum
chromodynamics (QCD) mainly use phenomenologically nad¢ig potentials in the place of the
Yang-Mills sector. In this context, it is appropriate to @stigate the relationship between the
nonperturbative scale associated with confinement andahg-Wlills sector of the theory.

This talk reviews results obtained in the heavy quark lifii€oulomb gauge QCD [2, 3]. Af-
ter making an expansion in the heavy quark mass and resgyitdithe leading order, we consider
the heavy quark propagator and the homogeneous Bethet&atgeation for quark-antiquark sys-
tems. With the further truncation to exclude pure Yang-8Airtices (but retaining nonperturbative
dressed propagators), we show that the rainbow-laddepsippaition is exact in this case and we
establish a connection between the temporal gluon propagatl the external physical scale (the
string tension), at least within the leading order truraratiln the second part of the talk, we inves-
tigate the (full nonperturbative) four-point quark-amntigk Green’s functions. We present exact,
analytic solutions, and show that the physical poles of tree@'s function explicitly separate from
the possible unphysical ones. Moreover, we find that theipalysoles of the Bethe-Salpeter equa-
tion are contained within the singularities of the Greenisction. These results will hopefully be
useful in the future investigations of phenomenologicaldeis for mesons and baryons (see, for
example, Ref. [4] for a numerical analysis of the inhomogeseBethe-Salpeter equation).

2. Quark propagator in the heavy mass limit

Let us start by considering the explicit quark contributiorthe full QCD generating func-
tional:

ZIX, X] = /.@d)exp{l/d“xqa(x) [|y°D0+|7.f)—m]anB(x)}
><exp{l/d“x[ya(x)qa(x)+ﬁa(x)xa(x)] +|§”YM}. (2.1)

In the above 2® denotes the integration over all fields presepgtjs the quark fieldgq the con-
jugate antiquark field, angy, xo the corresponding sources. The common indeg ... denotes
the color, spin and flavor indices. The Dirganatrices satisfy{ y*,y'} = 2g"¥, with the metric
g"v = diag(1,—1). The structure constants of tigJ(N;) group are denoted witli?°®, and the
Hermitian generators satisf§f 2, T°) = 113°°T¢ and are normalized via TF2,T?) = 62°/2. Ay

represents the Yang-Mills part of the action and

Do = dp — I1gT20%(x), D = O+ 1gT2A%(x), (2.2)

are the temporal and spatial components of the covariaiviatige in the fundamental color repre-
sentation A ando refer to the spatial and temporal components of the gluod, fiebpectively).
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We now decompose the full quark field according to the heaaylgtransformation

1+y° Y

() = ™ )+ HXg . ha (X =™ | 5 a0 Hag —em |2 ]| @29

a
(similarly for the antiquark field), where the two comporsgmandH are introduced with the help
of the spinor projectorél 4 y°) /2. This is a particular case of the heavy quark transformptadb
from the Heavy Quark Effective Theory [HQET] [5], which teriout to be useful in Coulomb
gauge.

After inserting the quark fields, decomposed according to(E®), into the generating func-
tional Eq. (2.1), we integrate out thé-fields and make an expansion in the inverse of the heavy
guark mass (in the following, we will adopt the standard teotogy and denote it simply “mass
expansion”). At leading order, the generating functioealuces to:

2% = [ 70exps [ ¢t 10bc+ 970" ] hp )|
cexp{1 [ o™X (0o () + €M (xa )] + 15w |+ 0 (1/m), (24

where we have replaced the covariant derivafdewith its explicit expression. In the above
expression, we notice that as a result of the heavy quarkftranation, at leading order in the
mass expansion the quark interacts only with the tempotaimglwhereas the spatial component
is suppressed. Also, note the absence of the Djratructure, as a result of the multiplication
with the projectorg1+ y°)/2 (physically, this implies that the spin degree of freedaenaliples
from the system). A further important point is that in Eg.4{2we have kept the full quark and
antiquark sources, as opposed to HQET, where the souraesponding to the large components
h are used. This means that at leading order in the mass egpansiare allowed to use the full
apparatus of the functional formalism, and hence derivefulleDyson-Schwinger equations in
Coulomb gauge QCD, while replacing the corresponding mratmas and vertices by their leading
order expressions.

In Coulomb gauge QCD (without the mass expansion), the quegpkequation for the proper
two-point function is given by (see Ref. [6] for a completeidation and notation):

Maaay(k) = r(ﬁ(zl)av(k) —i—/d'(;) r(%%?aﬁ(k’_wvw_k)%qﬁk( )rgqaky(w7_k7k_w)ng(k—O))
+réq>m3|(k — 0, 0 — K)\Wagak (@) gaacy; (@. —k K — w)WER; (k —w)},(2.5)

where dw = dw/(2m)*. In order to solve this equation, we first need to specify tee-tevel
quark proper two-point function and the components of the-tevel quark-gluon vertex. They are
derived directly from the generating functional Eq. (2.43lare given by:

r 5 (K) = 1845 ko — M) + & (1/m), (2.6)

o2 (ki ke,ks) = [gT% g+ 0 (1/m). 2.7)

Note that the spatial component of the quark-gluon vertex@der'(1/m), as shall be explained
shortly below. Further, the nonperturbative temporal glpoopagator entering Eqg. (2.5) has the
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form [7]:
WEB (K) = 8°Wpo (K) = 66%2%(?2). (2.8)

Following lattice results, which signal that that the gludmessing function is largely independent
of energy, we assume thBi;, is a function of the three-momentum. Also, lattice invesiigns
indicate thaD is infrared divergent and behaves likék? for vanishingk? [8] (however, we will
need the explicit form of this function only at the end of ttadcalation).

Finally, the last input is provided by the Slavnov-Tayloeidity, which furnishes a relation
between the two- and three-point functions of the theoryis Tderived from the invariance of
the QCD action under a time-dependent Gauss-BRST trang&jrrand in Coulomb gauge reads
(k1 + ko + ks = 0):

k
K aoap (Ki Ko ka) = 1 é I 8gnapi (ke Ko, ka) M 28 (—k)

+rqqa5(k1) [ [eX ccq(kl + o, k3 — do; k2) + |gTd} B

{ qcoq(k2+q07k3 o; K1) — |gTd} a8 rqqéﬁ(_kz)- (2.9)

In the aboveqp is an arbitrary energy injection scale (arising from theamariance of Coulomb
gauge [9]) '« is the ghost proper two-point function, aﬁgl,écq andfq;écq are ghost-quark kernels
associated with the time-dependent Gauss-BRST transf&imce in the generating functional,
Eg. (2.4), the tree-level spatial quark-gluon vertex appa&Z(1/m), by making the further trun-
cation to neglect the pure Yang-Mills vertices, it followsrh the Dyson-Schwinger equation for
the spatial quark-gluon vertex that the fully dres$gga ~ ¢(1/m) (and hence it is neglected).
Further, the ghost-gluon vertices involve pure Yang-Milistices and hence are also truncated out.
Thus, in our truncation scheme and at leading order in thesraggansion, the Slavnov-Taylor
identity takes the simple form:

K S0 (kKo ka) = Fogas(ka) 19T . 19T Teap(—ke)+0(1/m).  (2.10)

Collecting the above results, we find the following expresdgor the heavy quark propagator,
as a solution of Eg. (2.5), combined with Eqg. (2.10):

—|5aB
Wegap (k) = [ko—m— 7 +1€] +

0 (1/m), (2.11)
with the constant (implicitly regularized, as indicatedtbg index t"):

=5 [ TP D 4 o ym), (212)
2 r w

whered® = d3@/(2m)® andCr = (N2 —1)/2N.. The gap equation, Eq. (2.5), has been solved

under the assumption that the temporal integral has bedorped first, with the spatial integral

regularized and finite. The solution, Eq. (2.11), is thereitesd into the Slavnov-Taylor identity,

Eqg. (2.10), and we find that the temporal quark-gluon vereains nonperturbatively bare:

qoaB (kla ka, k3) [gTa]aB +0 (1/m) : (2.13)
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Note that the quark propagator, Eq. (2.11), possesses la gialg in the compleXg plane,
in contrast with the standard QCD propagator, which has dldocovariant pole. Hence, we
need to derive the quark and antiquark propagators separaith the corresponding Feynman
prescriptions. Examining the closed quark loops (virtuahrf-antiquark pairs connected by a
primitive vertex), we find that they vanish due to the energggration over two quark propagators
with the same Feynman prescription, and this implies thattibory is quenched in the heavy mass

limit:
, dko

/ [ko—m— 7 +1€] Ko+ po— M— % + I€]
Further, note that the propagator Eq. (2.11) is diagonahénduter product of the fundamental
color, flavor and spinor spaces, and this exhibits the ddimupf the spin from the heavy quark
system. Finally, it is important to emphasize that the jpasiof the pole has no physical meaning,
since not the propagator itself, but the bound state of akopraal an antiquark is physical. The fact
that the poles in the quark propagator are shifted to infimitge the regularization is removed sim-
ply means that an infinite energy is needed to create a singldk drom the vacuum. If a hadronic
state is considered, only the relative energy (derived filoerhomogeneous Bethe-Salpeter equa-
tion) is required to describe the system, and in this casaitigularities appearing in Eq. (2.11)
cancel. Similar types of cancellation appear in the sahgtiof the four-point quark-antiquark
Green’s function (see also the discussion from section 4).

For the antiquark propagator we obtain:

=0. (2.14)

—|5O,B
[ko+m— .7 +1€]

Wygap (k) = +0(1/m), (2.15)

and the corresponding temporal antiquark-gluon vertexisngby:
Magoap (ki k2, ks) = = [gT% gy + O (1/m). (2.16)

In the above, notice the Feynman prescription of the prapagas well as the sign of the loop
correction,.#. As shall be discussed in the next section, this apparentipmmodification will
play an important role in the interpretation of the solutiasf the Bethe-Salpeter equation for
quark-antiquark states as bound state/confining solutions

3. Homogeneous Bethe-Salpeter equation

Let us now consider the full homogeneous Bethe-Salpetatieufor quark-antiquark bound
states [2] (see also Fig. 1):

F(p;P)ag = _/. Tk Kap:ay(P, K P) [Wag (K- )T (K; P)Wog (K- )] 5 - (3.1)

In the above, the momenta of the quarks are givep by p+ &P, p- = p— (1— &)P (similarly
for ki), and¢€ is the momentum sharing fraction (note that the solutioms Bed in the next section
turn out to be independent &f just as in the covariant case [10P.represents the 4-momentum
of the bound state (assuming that a solution exit$3,the Bethe-Salpeter vertex function for the
particular bound state an€lis the Bethe-Salpeter kernel, which still needs to be spgetifi
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Figure1: Homogeneous Bethe-Salpeter equation for quark-antidaarikd states. Internal propagators are
fully dressed and solid lines represent the quark propagbi@ box represents the Bethe-Salpeter keiknel
and filled blobs represent the Bethe-Salpeter vertex fan€tiwith the (external) bound state leg given by a
dashed line.

It is well-known that the Bethe-Salpeter keriebnd the quark self-energy are related via the
axialvector Ward-Takahashi identity [11]. Under trunoatiit was seen in the last section that the
heavy quark self-energy reduces to the rainbow truncated;fthe corresponding truncation for
the kernel is the ladder approximation. In [2], this has beglicitly derived. The Bethe-Salpeter
kernel in the heavy quark-antiquark system under the ttiorcaonsidered here is thus:

aﬁ 5y(pak)—rqqaay(p+a KP k— p)ng(ﬁ k)rbqaﬂé( pﬂkﬂp—k)‘ (3-2)

We now insert the nonperturbative results for the propagatad vertices, Egs. (2.11,2.13,
2.15,2.16) and the expression Eq. (2.8) for the temporargpropagator. After explicitly identi-
fying the antiquark contribution, i.&\Vgq(k-) = —WqTq(—k_), we perform the temporal integration
over the quark and antiquark propagators, which now leaflsnike Eq. (2.14)):

L/w dkg B -1
21 ) K —m— A +1g] [ —m+ % —1g]  Ro—25, +2¢

(3.3)

Further, we insert the expression Eq. (2.12).f¢rand after Fourier transforming to coordinate
space we find the following solution for the bound state enefghe quark-antiquark system:

R —g / deaa e"”‘XCM] +O(1/m). (3.4)

In the above(y, is an (unknown) color factor assigned to the Bethe-Salp&tdex ™, which has
to be yet identified:
[Tr(R)T%ap = Cml ap(X). (3.5)

Because the total color charge of the system is conservedaarshing [12], a quark cannot
exist as an asymptotic state. Hence, the bound state eRgmjya quark-antiquark system can
be either infinite, such that the system is not allowed, adity rising, if the system is confined.
If the temporal gluon propagator is more infrared divergiain 1/||, we find that in order to
ensure the convergence of the spatial inte@@gl must be equal t€. This immediately leads to
the condition

Cay(X) = 0yl (%), (3.6)

which implies that the Bethe-Salpeter equation can onlehayinite solution forcolor singlet
states. Further, if we assume that in the infrabeg, = X/@&? (as indicated by the lattice [8]),
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whereX is a combination of constants, then from Eq. (3.4) we find

gZCF X
8m

P =0lX = IX|4+ 0 (1/m). (3.7)

This result shows that there is a direct connection betwkerphysical string tensioa and the
nonperturbative Yang-Mills sector of QCD, at least under tituncation scheme employed here,
which corresponds to a color singlet bound state of a quatdkaanantiquark, and otherwise the
system has infinite energy.

4. Four-point quark-antiquark Green’s functions

Similar to the gap equation, we derive the the full Dysonv@oger equation for the proper
(1P1) four-point quark-antiquark Green'’s function in cgpufiation space (see Ref. [3] for notation
and technical details of the functional derivation):

<yt >= (0T ap [ Ay3(x—y) x

{ [<WBXU(K><|t1K|qyz|a§><|p§|pg>} {<IqrwlqvIGE><IXV|Xg><|ﬁ£|qnt|0g><lpﬁlp§>}
— :<|7BX|X5><|q5|q,,t|a§><|p€°|p,‘3>} {<|t1rw|qv|oﬁ><|yle,\ ><|qA|qyz|a,?><|pB|p§‘>}
— _<|7BX|XK><|qK|qu|aAC><|p§|p3><qrwlqm|a\§’|aﬁ><|pﬂlp§‘>]

+ :<|73X|x5><|q5|q,,t|a§><|p§|p,?>} [<|qrw|qyzlo,?|a§><|p§|p§j‘>]

+ :<|73X|XK><|GK|qu|qTW|qmaj’><|p§|p§>}

- :<l75x|XK><'ﬁKIQyzlﬁAlqnt><'qrwquIUE><'YVIXA ><|pﬂ|p§‘>]

- —<IYBXIXK><IﬁKIqVZIqTWIq)\ ><IX ) 16> <1050t 107> <1pP1p5>

- _<|73X|xv><|qv|qu|qu|qm><|7u|xK><|qK|qu|af><|p§|p§>]

+ —<|7BX|XK><|ﬁK|qu|a§><|p§|p3>] [<|qrw|qu|o§’><WH|X5><|t15|q,7t|o§><|p§|p§j‘>]

— [<|73X|x5><|q5|qm|a§><|p§|p3>} [<|qrwlq,1|a\‘,’><Wu|xK><|qK|qu|aj’><|p§|p§>] }
¥ 4.1)

where the dots represent tAevertex terms (which will be truncated out in our scheme), aed
have already replaced the tree-level temporal quark-gltestex with its expression Eq. (2.13).
The above equation is diagrammatically represented inZig.

We now proceed by applying our truncation scheme at leadidgran the mass expansion.
Since we shall consider the flavor non-singlet Green’s fandh thes-channel (the quark and the
antiquark are regarded as two distinct flavors, but with Equesses), the diagrams (a), (c) and (i)
of Fig. 2 are excluded. In the diagram (b) (crossed laddeg trhange diagram), we insert as
before the appropriate propagators Egs. (2.11, 2.15) anide Eqgs. (2.13, 2.16). The resulting
energy integral is similar to the integral (2.14) and vaegshust like the higher order contributions
to the kernel of the homogeneous Bethe-Salpeter equatioming to the diagram (d), we see
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Figure 2 Diagrammatic representation of the Dyson-Schwinger égudbr the 1Pl 4-point quark-
antiquark Green'’s function. Blobs represent dressed prddt) 4-point vertex, solid lines represent the
quark propagator, springs denote either spafialof temporal ¢) gluon propagator and cross denotes the
tree level quark-gluon vertex. Internal propagators anid/&Rices are fully dressed.

that this contribution involves a quark-two gluon vertexora the corresponding Slavnov-Taylor
identity (derived explicitly in Ref. [3]), it can be seen thhis vertex is zero and hence the diagram
(d) vanishes.

At this stage, we adopt the following strategy: discard lfi@rtnoment the diagrams (f) and (g),
which include the 1PI four-point quark-antiquark Greemsdtion, and the diagram (e), containing
a four-quark-gluon vertex, solve the equation with the remg terms (the diagram (h) and the
rainbow-ladder term (j)), and with the obtained solutioture to the diagrams (f), (g) and (e), and
show that they cancel (and hence our assumption is coristarthis case, Eq. (4.1) reduces to
the Dyson-Schwinger equation for the 1PI four-point quarkda’s function in thes-channel, in
the ladder-approximation (shown diagrammatically in Big.

rg))/m(pl, P2, P, P4) =
_/ dow [r((%;aﬁ(ph —P1— @, 0)Wagas (P1+ W) s (P1+ @, Pa, —P1— Pa— w)]
X [r%qaw(p& P2 — @, P1 + Pa + 0)Weguk (@ — P2)T Sgory (@0 — P2, P2, — )]
XWgo (—@)W5G (Py+ Pa+ w)
_/ dwr%?ap(plv —P1— @, @)Wy (P14 @) iy (P + @, P2 — @, P3, Pa)Wegux (0 — P2)
X ooy (@ — P2, P2, —W)WE3 (—w). (4.2)

As before, we identify the antiquark component of Eq. (4l&yvér line of Fig. 3) and insert
the expressions Egs. (2.11, 2.15), for the quark and amkqurapagators, along with the vertices
Egs. (2.13, 2.16) and the definition Eq. (2 8) for the temipgitgon propagator. We further make
the assumption thdt® (py, pz, ps, pa) = I (Po; P1 + Pa), wherePy = p? + p3, which allows us
to separate the three-momentum and energy integrals. Engyeimtegrals are similar to Eqg. (3.3)
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~ 7

w-p,

Figure 3: Truncated Dyson-Schwinger equation for the 1Pl 4-pointe@iefunction in thes-channel.
Same conventions as in Fig. 2 apply.

and can be carried out. Making the following color decomiamsifor the function (:

wherel'(l4) andr(24> are scalar functions and Fourier transforming back to doatd space, we find
the following solution for the 1P| quark-antiquark Greefigaction:

2\ 2 2
Wgo (X
r&en (PoX) = 1 <—2?\, ) o)

s s (Po—270Ne(NZ—2) + 1PNCEWoo (¥)
ayOrn Po— 2% — 10?Ce Wy (X) + 21€

+0an 5ry} , (4.4

wherex = || is the separation associated with the momengan ps.

As promised, with the solution Eq. (4.4) for the 1P| Greensdtion, we now return to the
diagrams (f), (g) and (e) and show that they do not contritthe final result. To see this, we first
consider the diagram (g) and notice that the energy depeadwtthe internal four-point function
can be written as

) (Py+ wp) ~ MW (4.5)

whereX is a combination of constanta,= 1,2 andm= 0,1. Then the energy integral takes the

form
2+n 1

/d%%mﬂ [+ X +1¢€]

Clearly, this integral is a generalization of Eq. (2.14) #nid vanishes, just as for the loop correc-
tions in the kernel of the Bethe-Salpeter equation from tlevipus section and the diagram (b)
from above. An identical calculation for the diagram (f)calting that the lower line corresponds
to an antiquark propagator, leads us to the fact that thégyiat is also zero. Finally, turning to

the diagram (e), containing the four quark-gluon vertex,netéce that the perturbative series of
this diagram coincides with the ladder resummation of tleg@ims (f) and (g), which we have

found to be vanishing, and hence this diagram is also zeen(though the five-point interaction

vertex itself does not vanish — see also Ref. [3] for a detaliegrammatic analysis). In turn, this
implies that our original assumption is correct and the tsmuEqg. (4.4) is valid at every order in

perturbation theory. Marginally, we note that the fact ttet five-point function is finite relates

to the existence of three-quark bound states in the Faddgetien, in the ladder approximation

[13].

—0. (4.6)
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Figure 4. Relation between the 1PI (dark blob) and amputated (shad®jl &-point Greens function for
the quark-antiquark system. Internal propagators and &Rices are fully dressed.

b k, < < q,
P S
v T - B 1) T
/% A - - 5

Figure5: Truncated Dyson-Schwinger equation for the fully amputateark-antiquark 4-point Green’s
function in thes-channel.

Let us now consider the Dyson-Schwinger equation for tHg firhputated four-point quark-
antiquark Green’s function in thechannel, which we denot&®. This is related to the 1PI
function T ® via the Legendre transform (see Fig. 4). This study is mteivdy the fact that this
equation reduces (under truncation) to the inhomogenemdel Bethe-Salpeter equation, from
which the homogeneous Bethe-Salpeter equation of thequ&@ection is derived. In the follow-
ing, we will derive the solutions of this equation, analyhe positions of the poles, and explic-
itly verify that the physical solutions coincide with thelal state solutions of the homogeneous
Bethe-Salpeter equation.

Starting with Eqg. (4.2) (in coordinate space) for the prdpection, we replace the 1PI func-
tion 4 with the amputated functio&® according to Fig. 4, and cut the external quark legs. The
resulting equation fo6* reads (see also Fig. 5):

4 —
Gltyen (P P-iKi K ) =WEG(B—K) (o] o | Tooo |,
— [ dq [rawg Wag(d )20 | W2 (B—)GL). ki ko). (47
A |Maao\aa(d) |, [Waa(@-)Tqeo | | Woo (P— @) Crurn (@, A3k ko). (4.7)
In the above, for the quark momenta we use the same converiin the Bethe-Salpeter equation,
Eq. (3.1). Again, we replace the heavy quark and antiquanipgmators and vertices with the
expressions Egs. (2.11, 2.15, 2.13, 2.16), perform theggriategration, and Fourier transform

back to coordinate space. Similar to the proper four-paintfion, we make a color decomposition
of the functionG™®:

(G(14) and G(Z4> are scalar functions), and after using the Fierz identityait out the color factors,

10
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we obtain the final result for the functid®¥:
92 (PO—Zfr)Waa( )
2 Po— 2.9 + 14 W (X) + 21

(Ro—2.%)
X | Oaydrn Po— 2% — 102Ce Wy (X) + 21€

wherePy = p, — p_ is the total energy of thgq state.

Analyzing the structure of the four-point functions, wetfitstice that even though the results,
Egs. (4.4, 4.9), are derived under truncation, the dendmirsdructure of the 1Pl and amputated
Green’s functions are identical in both color channels, fanithermore, the physical and nonphys-
ical singularities have disentangled automatically. 'ggshe form Eqg. (2.8) for the temporal gluon
propagator, the denominator factor of the color singlenhaehin either Eq. (4.4) or Eq. (4.9) can

be rewritten in the form oz D
Po—g/ @ "" [1—e"7"ﬂ. (4.10)

In this expression we recognize the bound state (infraredfirdag) energyPyes(X) = o|X| (fur-
ther assuming thabqq(@?) ~ 1/@?), similar to Eq. (3.4) for the homogeneous Bethe-Salpeter
equation in the color-singlet channel. Hence, we have faumaxplicit analytical dependence
of the four-point Green’s function on theg bound state energy resulting from the homogeneous
Bethe-Salpeter equation.

Turning to the overall denominator factors of Egs. (4.4),4i.8. the denominator factor not
specific to the color-singlet channel, we again insert th@igik form of the temporal gluon propa-
gator and arrive at the following result:

C

This factor does not appear in the homogeneous Bethe-8akagiation; it is part of the normaliza-
tion and, similar to the quark propagator, represents ahysigal pole which is shifted to infinity
when the (implicit) regularization is removed.

Gipen (PoiX) =

1
— Oan 5ryN—C ; (4.9)

5. Conclusions

In this talk, we have discussed the Dyson-Schwinger andeB8#ipeter equations for quark-
antiquark systems in Coulomb gauge, at leading order in &@nhquark mass expansion and
with the truncation to include only the (nonperturbativeinporal gluon propagator. Under this
truncation, the rainbow approximation to the quark gap gquas exact, as is the corresponding
ladder approximation to the homogeneous Bethe-Salpetetieq. The only physical solution
corresponds to confinement, i.e. only color singlet mesatesthave finite energy (and hence are
physically allowed), and otherwise the system has infinitergy. Incidentally, these results are
supported by recent Dyson-Schwinger studies in Coulomgeatileading order [14].

Turning to the four-point quark-antiquark Green'’s funoipwe have presented analytic solu-
tions for both the proper and amputated Green’s functioree tWo functions have the same de-
nominator structures, and the physical and nonphysicglsanities disentangle, the physical poles
coinciding with the bound state solutions obtained for tbmmbgeneous Bethe-Salpeter equation.
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