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1. Introduction

In this talk I will give an overview over recent results obtained within the Hamiltonian ap-
proach to QCD in Coulomb gauge. I will focus on the extension of this approach to finite tem-
peratures and to the inclusion of quarks. My main interest here will be the finite-temperature
deconfinement phase transition and the spontaneous breaking of chiral symmetry.

Going to Weyl gaugeA0 = 0 canonical quantization of Yang–Mills theory yields the following
Hamiltonian

H =
1
2

∫

(

~Π2+~B2
)

. (1.1)

Here~Π = δ/iδ~A is the canonical momentum operator and~B is the non-Abelian magnetic field.
The Yang–Mills Hamiltonian (1.1) is invariant under spatial (time-independent) gauge transforma-
tions. A quantity of central interest in quantum field theoryis the vacuum wave functional, by
means of which all correlation functions can be evaluated. This quantity is obtained by solving the
Schrödinger equation

Hψ = Eψ (1.2)

for the lowest energy eigenstate. There have been various attempts to solve the Yang–Mills Schrö-
dinger equation (1.2) directly for gauge invariant wave functionals, in particular inD = 2+ 1,
see Ref. [1] and references therein. One can give arguments that the Yang–Mills vacuum wave
functional (inD = 3+1) can be approximated in the low-energy regime by [2]

ψ [A] = exp

[

−
1
2

∫

F2
i j

]

. (1.3)

So far one has not succeeded in determining the Yang–Mills vacuum wave functional in a gauge
invariant way. A much more convenient way is to fix the gauge and for the purpose of Hamiltonian
Yang–Mills theory Coulomb gauge is, in particular, convenient. The prize one pays is that the
Hamiltonian is more complicated. In Coulomb gauge the Yang–Mills Hamiltonian is given by [3]

H =
1
2

∫

(

J−1~Π⊥J~Π⊥+~B2
)

+HC , (1.4)

whereJ = Det(−D̂∂ ) is the Faddeev–Popov determinant withD̂ = ∂ +gÂ, Âab= f acbAc being the
covariant derivative in the adjoint representation. Furthermore,

HC =
1
2

∫

J−1~Π‖J~Π‖ =
g2

2

∫

J−1ρ(−D̂∂ )−1(−∂ 2)(−D̂∂ )−1Jρ (1.5)

is the Coulomb Hamiltonian, which arises from solving Gauss’s law (which is a constraint to the
wave functional to guarantee gauge invariance) for the longitudinal momentum operator~Π‖. In
Eq. (1.5),ρ = ρgl + ρm is the total color charge, which contains beside the charge of the Yang–

Mills field ρgl = −~̂A~Π also the charge of the matter fieldsρm. By resolving Gauss’s law gauge
invariance has been fully taken into account and in Coulomb gauge each functional of the transverse
gluon fieldA⊥, ∂A⊥ = 0 is, in principle, a physical wave functional. Note that in the canonical
quantization of Yang–Mills theory the gauge field figures as the coordinate, and the transition to
Coulomb gauge implies a transition to curvilinear coordinates. Accordingly, the kinetic piece of
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the Yang–Mills Hamiltonian [the first term in Eq. (1.4)] resembles the Laplacian in curvilinear
coordinates. In the scalar product of the Yang–Mills wave functionals the transition to Coulomb
gauge can be accomplished by using the standard Faddeev–Popov method, which introduces the
Faddeev–Popov determinant also in the integration measure

〈φ | . . . |ψ〉=

∫

DA J(A)φ∗(A) . . .ψ(A). (1.6)

2. Zero-temperature Yang–Mills theory

One can solve the Yang–Mills Schrödinger equation in perturbation theory by expanding the
Hamiltonian and the wave functional in powers of the coupling constantg, applying standard
Rayleigh–Schrödinger perturbation theory [4]. From the Coulomb term (1.5), which is orderg2,
one can extract the running coupling constant and obtains the same result as in ordinary covariant
perturbation theory within the functional integral formulation. We are interested here, however, in
a non-perturbative solution of the Yang–Mills Schrödingerequation and for this purpose we exploit
the variational approach using Gaussian type wave functionals. The first variational calculations in
Coulomb gauge were performed in Ref. [5] and later on in Ref. [6]. Our approach [7] differs from
previous variational calculations in Coulomb gauge in the ansatz of the vacuum wave functional,
in the treatment of the Faddeev–Popov determinant (treatedfully in our approach and at least par-
tially neglected in previous approaches) and in the renormalization, for more details see Sect. IID
of Ref. [1].

The variational approach developed in Tübingen uses the trial ansatz for the vacuum wave
functional [7]

ψ(A) =
1

√

Det(−D̂∂ )
exp

[

−
1
2

∫

AωA

]

, (2.1)

which contains besides the exponential the inverse square root of the Fadeev–Popov determined.
This has the advantage that in expectation values the Faddeev–Popov determinant in the integration
measure, see Eq. (1.6), is cancelled. Furthermore, the static gluon propagator is with this wave
functional given by the inverse of the variational kernelω

〈AA〉= (2ω)−1, (2.2)

which shows thatω has the meaning of the gluon energy. Minimizing the vacuum expectation
value of the Hamiltonian,〈ψ |H|ψ〉 → min, one finds [8] for the gluon energyω the result shown
in Fig. 1 (dashed line). At large momenta it behaves like the photon energyω(k → ∞) ∼ k and
is infrared divergentω(k → 0) ∼ 1/k. This, of course, is the manifestation of the confinement of
gluons. Figure 1 shows the lattice results [9] for the gluon propagator (2.2), which can be fitted by
Gribov’s formula.

ω(k) =

√

k2+
M4

k2 (2.3)

with the effective massM ≈ 880 MeV. Also shown in this figure is the result of the variational
calculation [8]: as can be seen the gluon propagator obtained from the variational calculation agrees
quite well with the lattice data in the infrared and the ultraviolet, while there is some missing
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Figure 1: Comparison of the gluon propagator
1/(2ω)with Gaussian [8] (dashed line) and non-
Gaussian [10] (full line) functional to the lattice
data [9].
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Figure 2: Form factor of the three-gluon ver-
tex for orthogonal momenta and comparison to
lattice data for the 3-dimensional Landau-gauge
vertex [11].

strength in the mid-momentum regime around 1 GeV. This can betraced back to the absence of
the gluon loop, which escapes the variational calculation with the Gaussian type of ansatz (2.1). In
Ref. [10] the variational approach was extended to non-Gaussian wave functionals including up to
quartic terms in the gauge field

|ψ [A]|2 = exp(−S[A]), S[A] =
∫

ωA2+
1
3!

∫

γ(3)A3+
1
4!

∫

γ(4)A4. (2.4)

To capture the gluon loop in the variational calculation oneneeds to include at least the three-
gluon termγ(3) in the exponent of the wave functional. Then one finds the static gluon propagator
shown in Fig. 1 (full line), which gives a substantial improvement compared to the propagator
obtained with the Gaussian trial wave functional. Figure 2 shows the result for the three-gluon
vertex. Also shown are the lattice result for the three-gluon vertex calculated in 3-dimensional
Landau gauge Yang–Mills theory [11]. This theory corresponds to the use of the approximate
wave functional (1.3) in 3+1 dimensional Yang–Mills theory in the Hamiltonian approach. Since
the expression (1.3) represents a good approximation to thetrue Yang–Mills wave functional in the
low-momentum regime (see Ref. [12]) we expect the 3-dimensional Landau gauge lattice result to
agree well with the static three-gluon vertex inD = 3+ 1 Yang–Mills theory. Indeed we find a
quite reasonable agreement between the result of the variational calculation and the lattice data in
the infrared.

The above represented solution correspond to the so-calledcritical (or scaling) solution, where
the horizon conditiond−1(k = 0) = 0 was assumed for the ghost form factord(k) defined by the
ghost propagator

〈(−D̂∂ )−1〉= d(k)/k2. (2.5)

Figure 3 shows the result of the variational calculation forthe gluon energy (shown already in
Fig. 1) and the ghost form factor of the full variational calculation and the one with the Coulomb
term of the Hamiltonian, Eq. (1.5), excluded. One observes that the effect of the Coulomb term is
very small. We will therefore neglect this term in subsequent numerical calculations.
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Figure 3: The gluon energy (left panel) and the ghost form factor (right panel) with and without the Coulomb
term.

3. Finite-temperature Yang–Mills theory

To extend Yang–Mills theory to finite temperatures [13, 14] we consider the grand canonical
ensemble with vanishing chemical potential, which is defined by the density matrix

D = exp
[

−H/(kBT)
]

, (3.1)

wherekB is Boltzmann constant. For the evaluation of the thermal averages

〈. . . 〉T =
Tr(D . . . )

TrD
(3.2)

we need a complete basis of the gluonic Fock space, which we choose in analogy to the ground
state wave functional (2.1) in the form

|k̃〉=
1

√

Det(−D̂∂ )
|k〉, (3.3)

where the|k〉 form a complete set of states of the gluonic Fock space, whichwe choose in the
following way: we decompose the gauge field (in momentum space) in terms of creation and
annihilation operators

A(k) =
1

√

2ω(k)

(

a(k)+a†(−k)
)

, (3.4)

whereω(k) is an arbitrary (positive definite) kernel. Defining the vacuum state|k= 0〉 by

a(k)|0〉 = 0 (3.5)

this state becomes in coordinate representation

〈A|0〉= exp

(

−
1
2

∫

AωA

)

. (3.6)

A complete basis of the gluonic Fock space is then given by

|0〉, a†(k)|0〉, a†(k)a†(k′)|0〉, . . . (3.7)
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The exact density matrix (3.1) is too difficult to handle given the complicated form of the Yang–
Mills Hamiltonian. For this purpose we replace the Yang–Mills Hamiltonian in the density matrix
by a single-particle Hamiltonian

D = exp
[

−h/(kBT)
]

, h=

∫

d̄kΩ(k)a†(k)a(k), d̄k≡ d3k/(2π)3. (3.8)

Sinceh is a single-particle Hamiltonian the thermal averages (3.2) with the density matrix (3.8) can
be worked out by using Wick’s theorem. For the gluonic occupation numbers one finds

〈a(~k)a†(~k′)〉T = (2π)3δ (~k−~k′)n(k), with n(k) =
[

exp
(

Ω(k)/(kBT)
)

−1
]−1

, (3.9)

which are the usual Bose occupation numbers withΩ(k) representing the single-particle energies.
By means of Wick’s theorem all thermal averages can then be expressed in terms of the gluon
propagator

〈A(~k)A(~k′)〉T = (2π)3δ (~k+~k′)
(

1+2n(k)
)

/
(

2ω(k)
)

. (3.10)

From the density matrix (3.8) we find the entropySand the free energyF

S=−kB TrD lnD, F = 〈H〉T −TS. (3.11)

So far the two kernelsΩ(k), entering the density matrix (3.8), andω(k), entering our basis states
(3.6), are completely arbitrary. We now determineΩ(k) by minimizing the free energy (3.11).
Instead of taking the variation with respect toΩ(k) it is more convenient to take the variation with
respect to the finite temperature occupation numbersn(k) (3.9), which is equivalent sincen(k) is a
monotonic function ofΩ(k). This yields

Ω(k) =
δe[n,ω ]

δn(k)
, (3.12)

wheree[n,ω ] = 〈H〉T/
(

2(N2
c − 1) ·V

)

is the energy density per gluonic degree of freedom (V is
the spatial volume). From the analogy with Landau’s liquid Fermi theory we identifyΩ(k) as a
quasi-gluon energy. Evaluating the thermal expectation value of the Yang–Mills Hamiltonian〈H〉T

up to two loops one finds for the quasi-gluon energy

Ω(k)
ω(k)

= 1+
g2Nc

4

∫

d̄qF(~k−~q)
1+(k̂ · q̂)2

ω(q)

[

1+2n(q)
]

. (3.13)

The kernelω(k) can be chosen, in principle, completely arbitrary (except that it has to be
positive definite) and the results of our variational calculation should not depend on the choice of
ω(k). However, since we have introduced approximations (calculating the energy up to two loops)
our results do depend onω(k). The best we can do is to vary the free energyF Eq. (3.11) with
respect toω(k). This guarantees that the free energy is at least to first order independent ofω(k).
FromδF/δω(k) = 0 we find the gap equation

ω2(k) = k2+ χ2(k)+ Itad[n]+ Ic[n](k), (3.14)

whereχ(k) is the ghost loop,Itad[n] is the tadpole andIc[n](k) the one gluon-loop contribution
from the Coulomb term, see Fig. 4. The finite-temperature modifications arise exclusively from

6
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(a) (b) (c)

Figure 4: Diagrammatic representation of the contributions to the gap equation: (a) full ghost loop, (b)
tadpole, (c) one-gluon loop contribution from the Coulomb term. Small black dots and open circles represent,
respectively, bare and full vertices of the Hamiltonian; the double line denotes the Coulomb kernel.
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−

Figure 5: Diagrammatic representation of the ghost DSE.

the finite-temperature part of the gluon propagator, Eq. (3.10), which depends on the occupation
numbern(k). The finite-temperature modifications are all ultraviolet finite so the renormalization
of the gap and Dyson–Schwinger equations can be done in exactly the same way as at zero tem-
perature, see Ref. [15]. The gap equation has to be solved together with the Dyson–Schwinger
equation for the ghost propagator, which is illustrated in Fig. 5. This equation is the same one as at
zero temperature except that the gluon propagator is replaced by its finite-temperature counterpart
(3.10). As we have illustrated above for zero temperature, the Coulomb term of the Yang–Mills
Hamiltonian does barely influence the ghost and gluon propagator. Therefore we will ignore the
Coulomb term in the following.1 Neglecting the Coulomb term leads to substantial simplifications
[14]. The quasi-gluon energyΩ(k) of the density matrix (3.8) and the kernelω(k) of the vacuum
wave functional (3.6) become then identical. Furthermore,the ghost Dyson–Schwinger equations
and the gap equation then decouple from the Dyson-Schwingerequation for the Coulomb form
factor [7].

4. Infrared analysis

Before we present the numerical results let us summarize theresults of an infrared analysis for
the remaining gap and ghost Dyson-Schwinger equations. Letus first recapitulate the result of the
infrared analysis at zero temperatures [16].

For the infrared analysis we assume power-law behaviours ofthe propagators involved

ω(p→ 0) = A/pα , d(p→ 0) = B/pβ . (4.1)

Assuming the horizon conditiond−1(p= 0) = 0, which impliesβ > 0, we find from the ghost DSE
the sum rule

α = 2β +2−d, (4.2)

1We should, however, stress that the Coulomb term is utterly important for the quark sector since it provides the
confining potential for the quarks, see further below.

7
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whered is the number of spatial dimensions. For Coulomb gauge ind = 3 we obtainα = 2β −1,
and including also the gap equation one finds the following two solutions

β = 1 (1.001), β = 0.796(0.794), (4.3)

where the results from the numerical evaluation are given inthe bracket. Ind = 2 dimensions one
finds a single solution, which within the angular approximation is given by

β = 0.5 (0.45) (4.4)

while without the angular approximation one findsβ = 0.4.
At arbitrary finite temperature the infrared analysis cannot be carried out since the gluon en-

ergyΩ(k)=ω(k) enters the thermal occupation numbersn(k), Eq. (3.9), in the exponent. However,
at very high temperatures we can expand this exponent and theoccupation numbers reduce to

n(k) = kBT/ω(k). (4.5)

Thenω(k) enters only as power in the gap and DSE and we can carry out the infrared analysis in
the standard fashion. One finds the same sum rule Eq. (4.2) as at zero temperature. However, one
obtains only a single solution for the infrared exponent

β = 1/2, α = 0. (4.6)

This is the infrared exponent for the ghost ind = 2 dimensions, which reflects the fact that at high
temperature a dimensional reduction to the 2+1-dimensional theory occurs.

5. Numerical results

Figure 6 shows the ghost infrared exponentβ determined from the numerical solutions as
function of the temperature. As one observes the infrared exponent stays constant below a critical
temperature where it suddenly drops and approaches the value β = 1/2 for high temperatures,
in agreement with the infrared analysis. Both zero-temperature solutions,β = 1 andβ = 0.796,
convert to the same high-temperature solution. Figures 7 and 8 show the numerical solutions for
the ghost form factor and the gluon energy for zero temperature and above the deconfinement
temperature. One observes that the infrared behaviour is indeed in accord with the findings of the
infrared analysis. The sudden drop of the infrared exponentof the ghost form factor (see Fig. 6) can
be used to define the deconfinement phase transition temperatureTc. Fitting atT = 0 the numerical
solution forω(k) to the lattice gluon propagator [9] to fix the physical scale one finds for the critical
temperature of the deconfinement phase transition

Tc ∼ 270. . .290 Mev, (5.1)

for SU(2), which compares well with the lattice result ofTc = 295 MeV.
Figure 9 shows the infrared mass of the gluon defined by the gluon energy at the numerical

infrared scaleλIR,
m(T) = ω(k= λIR,T). (5.2)

8
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Figure 6: IR exponent of ghost as function of
the temperature.
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Figure 7: The ghost form factor.
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Figure 8: The gluon energy.

 0.1

 1

 10

 100

 1000

 10000

 1  10

ω(λIR)

T/Tc

ω(λΙΡ)(T,g=0.5,c0=0.0)

Figure 9: The IR mass of the gluon.

This mass behaves similarly as the infrared exponent of the ghost form factor. It stays constant
below a critical temperature, where it suddenly drops and after that starts rising linearly with the
temperature. Zooming into the behaviour ofm(T) in the transition regime of Fig. 9, see Fig. 10,
one finds for the critical exponent of the effective gluon mass defined by

m(T)∼ (T/Tc−1)−κ (5.3)

a value ofκ ≃ 0.37. This compares well with the result ofκ = 0.41 obtained in Ref. [17], where
a quasi-gluon picture has been used to fit the lattice resultsfor the energy density and the pressure,
and assuming furthermore input from thed= 3 Ising model, which is in the same universality class
asSU(2) gauge theory.

Figure 11 shows the running coupling constant at zero temperature and above the deconfine-
ment phase transition. One observes a substantial reduction of the low energy plateau.
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Figure 10: Critical behaviour of the effective
gluon mass.
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Figure 11: Running coupling constant from the
ghost-gluon vertex.

6. Hamiltonian approch to QCD

When the quarks are included the Hamiltonian (1.4) has to be supplemented by the quark term

Hq =
∫

q†(~x)
[

~α
(

~p+g~A
)

+βm0

]

q(~x), (6.1)

whereq(~x) denotes the quark field operator andm0 is the current quark mass. Furthermore, the
matter charge density in the Coulomb Hamiltonian (1.5) becomesρa

m(x) = q†(x)taq(x), whereta

are the generators of the gauge group in the fundamental representation. For the quark sector we
use the following ansatz for the vacuum wave functional [18]

|φ〉Q = exp

[

∫

q†
(

Sβ +V~α ·~A
)

q

]

|0〉, (6.2)

where|0〉 is the perturbative quark vacuum state, which describes a system of free quarks with
massm0. FurthermoreSandV are variational kernels to be determined by minimizing the energy
density. ForV = 0 Eq. (6.2) defines a BCS-type wave functional considered in Ref. [19]. The new
important aspect of the wave function (6.2) is the coupling of the quarks to the gauge field with
form factorV. Without this term the quark-gluon coupling in the quark Hamiltonian (6.1) escapes
the expectation value. The total QCD wave functional is thengiven by

|Φ〉= |ψ〉YM ⊗|φ〉Q , (6.3)

where|ψ〉YM is the Yang–Mills vacuum wave functional given in Eq. (2.1).We keepω fixed at
its form determined from the Yang-Mills sector. We minimizethe quark energy〈〈Hq〉Q〉YM with
respect to the kernelsSandV. The result of this variation is shown in Fig. 12. Figure 13 compares
the scalar form factor with and without taking into account the quark-gluon coupling. With the
quark-gluon coupling switched off (V = 0) we find the value for the quark condensate

〈q̄q〉=
(

−113 MeV
√

σC/σW

)3
, (6.4)

which corresponds to the result of Ref. [19], while with the quark gluon coupling included (V 6= 0)
we obtain

〈q̄q〉=
(

−135 MeV
√

σC/σW

)3
. (6.5)
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Figure 12: The variational kernelsSandV.
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Figure 13: Comparison of scalar kernelS(k) with
(V 6= 0) and without(V = 0) the quark-gluon cou-
pling included.
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Figure 14: Running quark mass.

This is an increase of the figure in the bracket by about 20%. InEqs. (6.4) and (6.5)σC andσW

denote respectively the Coulomb and Wilsonian string tension. Lattice results show that the ratio
of these quantities is given in the range of

σC/σW ≃ 2. . .3. (6.6)

This implies a quark condensate in the range of

〈q̄q〉= (−191. . .234 MeV)3, (6.7)

which compares well with the phenomenological value of

〈q̄q〉= (−230 MeV)3. (6.8)

Figure 14 shows the dynamical quark mass as a function of the momentum with and without
the quark gluon coupling. We observe an essential increase in the quark mass when the coupling of
the quarks to the gluons is included. For the constituent quark mass defined by the zero momentum
value of the running quark massM =M(k= 0) we obtain without the quark-gluon coupling (V = 0)

M = 84 MeV
√

σC/σW (6.9)
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and with the quark-gluon coupling included (V 6= 0)

M = 132 MeV
√

σC/σW , (6.10)

which is an increase by 57%. Assuming again the lattice result Eq. (6.6) for the ratio of the string
tensions we obtain [18] constituent masses in the range of

M = 187. . .230 MeV, (6.11)

which brings the constituent mass into the region of its phenomenological value.
The results obtained so far in the variational approach to QCD in Coulomb gauge are very

encouraging and call for more detailed investigations.
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