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β=5.7, 5.8 and 6.0, based on the Fourier expansion. We find that the string tensionσ , i.e., the

confining force, is almost unchanged even after removing the high-momentum gluon component

above 1.5GeV in the Landau gauge. In fact, the confinement property originates from the low-

momentum gluon component below 1.5GeV, which is the upper limit to contribute toσ . In the

relevant region, smaller gluon momentum component is more important for confinement. Next,

we develop a manifestly gauge-covariant expansion of the QCD operator such as the Wilson

loop, using the eigen-mode of the QCD Dirac operator /D = γµDµ . With this method, we perform

a direct analysis of the correlation between confinement and chiral symmetry breaking in lattice
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symmetry breaking in QCD.
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1. Introduction

Nowadays, quantum chromodynamics (QCD) has been established as the fundamental gauge
theory of the strong interaction. However, nonperturbative properties of low-energy QCD such as
color confinement and chiral symmetry breaking [1] are not yet well understood, which gives one
of the most difficult problems in theoretical physics. The nonperturbative QCD has been studied in
lattice QCD [2, 3, 4] and various analytical frameworks [5, 6, 7, 8, 9, 10, 11].

In this paper, using lattice QCD, we research for the origin of color confinement in terms of the
relevant gluon-momentum component based on the Fourier expansion in the Landau gauge [12].
We also investigate the correspondence between color confinement and chiral symmetry breaking
using the Dirac-mode expansion in a gauge-invariant manner.

2. Relevant Region of Gluonic Momentum for Color Confinement

Many theoretical physicists consider that confinement phenomenon is brought by low-energy
region of QCD, because of the strong QCD coupling in the infrared (IR) region. However, at the
quantitative level, it is difficult to state the “relevant energy region” for confinement directly from
QCD. Since nonperturbative phenomena are mainly brought by gluon dynamics, the key question
here is“what is the relevant gluon-momentum region responsible for confinement?”

In this section, to get the answer, we study quantitative lattice-QCD analysis for the relevant
gluon-momentum region for color confinement [12], based on the Fourier expansion of the link-
variable. Our method consists of the following five steps.

Step 1. Generation of link-variable in the Landau gauge

We generate a gauge configuration on aL4 lattice with the lattice spacinga by the lattice-QCD
Monte Carlo method under space-time periodic boundary conditions. Here, we consider the link-
variableUµ(x) = eiagAµ (x) fixed in the Landau gauge, where the fluctuation from gauge degrees of
freedom is strongly suppressed, owing to the global suppression of gluon-field fluctuations [13].

Step 2. Four-dimensional discrete Fourier transformation

By the discrete Fourier transformation, we define the “momentum-space link-variable”,

Ũµ(p) =
1

Nsite
∑
x

Uµ(x)exp(i∑ν pνxν), (2.1)

with the lattice-site numberNsite. The momentum-space lattice spacing is given byap ≡ 2π/(La).

Step 3. Imposing a cut in the momentum space

We impose a cut oñUµ(p) in the momentum space, as shown in Fig.1. Outside the cut, we re-
placeŨµ(p) by the free-field link-variable,̃U free

µ (p) = 1
Nsite

∑xexp(i∑ν pνxν) = δp0, corresponding
to Uµ(x) = 1. Then, the momentum-space link-variableŨΛ

µ (p) with the cut is defined as

ŨΛ
µ (p) =

{
Ũµ(p) (inside cut)

Ũ free
µ (p) = δp0 (outside cut).

(2.2)
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Figure 1: A schematic figure of the UV cutΛUV and the IR cutΛIR on momentum-space lattice, with
the lattice spacingap ≡ 2π/(La). The momentum-space link-variablẽUµ(p) is replaced by the free-field
link-variableŨ free

µ (p) = δp0 in the shaded cut regions.

Step 4. Inverse Fourier transformation

To return to the coordinate space, we carry out the inverse Fourier transformation as

U ′
µ(x) = ∑

p
ŨΛ

µ (p)exp(−i∑ν pνxν). (2.3)

Since thisU ′
µ(x) is not an SU(3) matrix, we project it onto an SU(3) elementUΛ

µ (x) by maximizing
ReTr[UΛ

µ (x)
†U ′

µ(x)]. Such a projection is often used in lattice QCD algorithms. By this projection,
we obtain the coordinate-space link-variableUΛ

µ (x) with the cut, which is an SU(3) matrix and has
the maximal overlap toU ′

µ(x).

Step 5. Calculation of physical quantities

Using the cut link-variableUΛ
µ (x), instead ofUµ(x), we calculate physical quantities as the

expectation value in the same way as original lattice QCD.

With this method in lattice-QCD framework, we quantitatively determine the relevant energy
scale of color confinement, through the analyses of theQQ̄ potential. The lattice QCD Monte Carlo
simulations are performed on 164 lattice atβ=5.7, 5.8 and 6.0 at the quenched level [12].

Figure 2 (a) and (b) show theQQ̄ potentialV(R) with the IR cutoffΛIR and the UV cutoffΛUV ,
respectively. We get the following lattice-QCD results on the role of gluon momentum components.

• By the IR cutoffΛIR, as shown in Fig.2(a), the Coulomb potential seems to be unchanged,
but the confinement potential is largely reduced [12].

• By the UV cutoffΛUV , as shown in Fig.2(b), the Coulomb potential is largely reduced, but
the confinement potential is almost unchanged [12].

Figure 3 shows theΛIR/ΛUV-dependence of the string tensionσ obtained from the asymptotic
slope of theQQ̄ potentialV(R) with the IR/UV cutoff. Note that the ordinary QCD system without
the cutoff corresponds toΛIR = 0 andΛUV =+∞. As shown in Fig.3(a), the string tension is sig-
nificantly reduced by the IR-cutoffΛIR even for small values ofΛIR, and smaller gluon-momentum
component seems to be more important for confinement.
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Figure 2: (a) TheQQ̄ potentialV(R) with the IR cutΛIR plotted against the inter-quark distanceR. (b) The
QQ̄ potential with the UV cutΛUV . Lattice QCD calculations are done on 164 lattice with β = 6.0, i.e.,
a≃ 0.10fm andap ≡ 2π/(La)≃ 0.77GeV [12]. The dashed line is the originalQQ̄ potential in lattice QCD.
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Figure 3: (a) TheΛIR-dependence and (b) theΛUV-dependence of the string tensionσ . The string tension
is obtained from the asymptotic slope of theQQ̄ potentialV(R) with the IR/UV cutoff in lattice QCD on 164

at β =5.7, 5.8 and 6.0 [12]. The horizontal error-bar denotes the range from the discrete momentum, while
the vertical error-bar is the statistical one. The broken line denotes the original value ofσ ≃ 0.89GeV/fm.

As a remarkable fact, the string tension is almost unchanged even after cutting off the high-
momentum gluon component above 1.5GeV, as shown in Fig.3(b) [12]. In fact, the confinement
property originates from the low-momentum gluon component below 1.5GeV, which is the upper
limit to contribute toσ . Note here that the relevant region|p| ≤ 1.5GeV for the confinement is
only a small part of the total four-dimensional Brillouin zone of the gluon field,−π/a< pµ ≤ π/a
(µ=1,2,3,4). For example, atβ = 6.0 (i.e., a ≃ 0.1fm), the relevant region|p| ≤ 1.5GeV is less
than 0.2% in the total Brillouin zone, as shown in Fig.4.

With the same method, we find also the relevant role of low-momentum gluons to chiral sym-
metry breaking in lattice QCD [14]. However, the response pattern against the cut is rather different
from that on confinement, and higher-momentum gluons also contribute to the chiral condensate.

3. Gauge-Invariant Formalism with Dirac-mode Expansion: A Direct Investigation
of Correlation between Confinement and Chiral Symmetry Breaking

Next, we newly develop a manifestly gauge-covariant expansion of the QCD operator such as
the Wilson loop, using the eigen-mode of the QCD Dirac operator /D = γµDµ , and investigate the
relation between confinement and chiral symmetry breaking.
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1.5GeV 6GeV

Relevant Region

for Confinement

Figure 4: The relevant gluon-momentum region|p| ≤ 1.5GeV for confinement in the Brillouin zone (BZ)
−π/a< pµ ≤ π/a(≃ 6GeV) at β = 6.0. The relevant region is less than 0.2% in the four-dimensional BZ.
In the relevant region, smaller gluon-momentum component is more important for confinement.

3.1 Gauge Covariant Expansion in QCD instead of Fourier Expansion

The previous method is based on the Fourier expansion, i.e., the eigen-mode expansion of the
momentum operatorpµ . Because of the commutable nature of[pµ , pν ] = 0, all the momentumpµ

can be simultaneously diagonalized. which is one of the strong merits of the Fourier expansion.
Also it keeps Lorentz covariance.

However, the Fourier expansion doesnot keep gauge invariance in gauge theories. Therefore,
for the use of the Fourier expansion in QCD, one has to select a suitable gauge such as the Landau
gauge, where the gauge-field fluctuation is strongly suppressed in Euclidean QCD.

As a next challenge, we consider a gauge-invariant method, using a gauge-covariant expansion
in QCD instead of the Fourier expansion. In fact, we consider a generalization of the Fourier
expansion or an alternative expansion with keeping the gauge symmetry.

A straight generalization is to use the covariant derivative operatorDµ instead of the derivative
operator∂ µ . However, due to the non-commutable nature of[Dµ ,Dν ] ̸= 0, one cannot diagonal-
ize all the covariant derivativeDµ (µ = 1,2,3,4) simultaneously, but only one of them can be
diagonalized. For example, the eigen-mode expansion ofD4 keeps gauge covariance and is rather
interesting, but this type of the expansion inevitably breaks the Lorentz covariance. Then, we con-
sider the eigen-mode expansion of the Dirac operator /D = γµDµ or D2 = DµDµ , since such an
expansion keeps both gauge symmetry and Lorentz covariance.

In particular, the Dirac-mode expansion is rather interesting because the Dirac operator /D di-
rectly connects with chiral symmetry breaking via the Banks-Casher relation [6] and its zero modes
are related to the topological charge via the Atiyah-Singer index theorem [8]. Here, we mainly
consider the manifestly gauge-invariant new method using the Dirac-mode expansion. Thus, the
Dirac-mode expansion has some important merits.

• The Dirac-mode expansion method manifestly keeps both gauge and Lorentz invariance.

• Each QCD phenomenon can be directly investigated in terms of chiral symmetry breaking.

5
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3.2 Confinement and Chiral Symmetry Breaking:
Can we expect One-to-one Correspondence between them in QCD?

In particular, it is rather interesting and important to examine the correlation between confine-
ment and chiral symmetry breaking [7, 9, 11, 15, 16], since the direct relation is not yet shown be-
tween them in QCD. The strong correlation between them has been suggested by the simultaneous
phase transitions of deconfinement and chiral restoration in lattice QCD both at finite temperature
[4] and in a small-volume box [4].

The close relation between confinement and chiral symmetry breaking has been also suggested
in terms of the monopole/vortex degrees of freedom [9, 15, 16], which topologically appears in
QCD by taking the maximally Abelian/center gauge [5, 17, 18]. For example, by removing the
monopoles, confinement and chiral symmetry breaking are simultaneously lost in lattice QCD
[15], as schematically shown in Fig.5. This indicates an important role of the monopole to both
confinement and chiral symmetry breaking, and these two nonperturbative QCD phenomena seem
to be related via the monopole.

QCD� QCD in  

MA gauge�

MA  gauge fixing�

Monopole  

projection�

Photon  

projection�

Monopole part�

Photon part�

Monopole current�

Only with monopole,  

Confinement , 

Chiral Sym Breaking, 

Instanton are reproduced�

After removing monopole,  

No Confinement,  

No Chiral Breaking, 

No Instanton�

Hodge 
decomposition�

Figure 5: An illustration of the relevant role of monopoles to nonperturbative QCD. In the maximally
Abelian gauge, QCD becomes Abelian-like due to the large off-diagonal gluon mass of about 1GeV [19],
and there appears a global network of the monopole current [17, 18]. By the Hodge decomposition, the QCD
system can be divided into the monopole part and the photon part. The monopole part has confinement [18],
chiral symmetry breaking [15] and instantons [20], while the photon part does not have all of them.

However, as a possibility, removing the monopoles may be “too fatal” for most nonperturbative
properties. If this is the case, nonperturbative QCD phenomena are simultaneously lost by their cut.

In fact, if only the relevant ingredient of chiral symmetry breaking is carefully removed, how
will be confinement?To get the answer, we perform a direct investigation between confinement
and chiral symmetry breaking, using the Dirac-mode expansion.
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3.3 Eigen-mode of Dirac Operator in Lattice QCD

In lattice QCD with spacinga, the Dirac operator /D = γµDµ is expressed withUµ(x) as

/Dx,y ≡
1
2a

4

∑
µ=1

γµ
[
Uµ(x)δx+µ̂ ,y−U−µ(x)δx−µ̂,y

]
, (3.1)

whereU−µ(x)≡U†
µ(x− µ̂). In the use of hermiteγ-matrix γ†

µ = γµ , /D is anti-hermite and satisfies
/D†

y,x =− /Dx,y. The normalized eigen-state|n⟩ of the Dirac operator /D is introduced as

/D|n⟩= iλn|n⟩ (3.2)

with λn ∈ R. Because of{γ5, /D}= 0, the stateγ5|n⟩ is also an eigen-state of /D with the eigenvalue
−iλn. The Dirac eigenfunctionψn(x) ≡ ⟨x|n⟩ obeys /Dψn(x) = iλnψn(x), and its explicit form of
the eigenvalue equation in lattice QCD is

1
2a

4

∑
µ=1

γµ [Uµ(x)ψn(x+ µ̂)−U−µ(x)ψn(x− µ̂)] = iλnψn(x). (3.3)

The Dirac eigenfunctionψn(x) can be numerically obtained in lattice QCD, besides a phase factor.
According toUµ(x)→V(x)Uµ(x)V†(x+ µ̂), the gauge transformation ofψn(x) is found to be

ψn(x)→V(x)ψn(x), (3.4)

which is the same as that of the quark field. To be strict, for the Dirac eigenfunction, there can
appear an irrelevantn-dependent global phase factor aseiϕn[V], according to the arbitrariness of the
definition ofψn(x).

Note that the quark condensate⟨q̄q⟩, the order parameter of chiral symmetry breaking, is given
by the zero-eigenvalue densityρ(0) of the Dirac operator, via the Banks-Casher relation [6],

⟨q̄q⟩=− lim
m→0

lim
V→∞

πρ(0). (3.5)

Here,ρ(λ ) ≡ 1
V ∑n⟨δ (λ −λn)⟩ is the spectral density of the Dirac operator. Also, the zero-mode

number asymmetry of the Dirac operator /D is equal to the topological charge (the instanton number)
Q≡ g2

16π2

∫
d4x Tr (GµνG̃µν), which is known as the Atiyah-Singer index theorem, Index( /D)=Q [8].

3.4 Operator Formalism in Lattice QCD

To keep the gauge symmetry, careful treatments are necessary, since naive approximations
may break the gauge symmetry. Here, we take the “operator formalism”, as explained below.

We define the link-variable operatorÛµ by the matrix element of

⟨x|Ûµ |y⟩=Uµ(x)δx+µ̂,y. (3.6)

The Wilson-loop operator̂W is defined as the product of̂Uµ along a rectangular loop,

Ŵ ≡
N

∏
k=1

Ûµk = Ûµ1Ûµ2 · · ·ÛµN . (3.7)

7
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For arbitrary loops, one finds∑N
k=1 µ̂k = 0. We note that the functional trace of the Wilson-loop

operatorŴ is proportional to the ordinary vacuum expectation value⟨W⟩ of the Wilson loop:

Tr Ŵ = tr∑
x
⟨x|Ŵ|x⟩= tr∑

x
⟨x|Ûµ1Ûµ2 · · ·ÛµN |x⟩

= tr ∑
x1,x2,···,xN

⟨x1|Ûµ1|x2⟩⟨x2|Ûµ2|x3⟩⟨x3|Ûµ3|x4⟩ · · · ⟨xN|ÛµN |x1⟩

= tr∑
x
⟨x|Ûµ1|x+ µ̂1⟩⟨x+ µ̂1|Ûµ2|x+

2

∑
k=1

µ̂k⟩ · · · ⟨x+
N

∑
k=1

|ÛµN |x⟩

= ∑
x

tr{Uµ1(x)Uµ2(x+ µ̂1)Uµ3(x+
2

∑
k=1

µ̂k) · · ·UµN(x+
N

∑
k=1

µ̂k)}

= ⟨W⟩ ·Tr 1. (3.8)

Here, “Tr” denotes the functional trace, and “tr” the trace over SU(3) color index.

The Dirac-mode matrix element of the link-variable operatorÛµ can be expressed withψn(x):

⟨m|Û |n⟩= ∑
x
⟨m|x⟩⟨x|Ûµ |x+ µ̂⟩⟨x+ µ̂|n⟩= ∑

x
ψ†

m(x)Uµ(x)ψn(x+ µ̂). (3.9)

Although the total number of the matrix element is very huge, the matrix element is calculable and
gauge invariant, apart from an irrelevant phase factor. Using the gauge transformation (3.4), we
find the gauge transformation of the matrix element as

⟨m|Ûµ |n⟩ = ∑
x

ψ†
m(x)Uµ(x)ψn(x+ µ̂)

→ ∑
x

ψ†
m(x)V

†(x) ·V(x)Uµ(x)V
†(x+ µ̂) ·V(x+ µ̂)ψn(x+ µ̂)

= ∑
x

ψ†
m(x)Uµ(x)ψn(x+ µ̂) = ⟨m|Ûµ |n⟩. (3.10)

To be strict, there appears ann-dependent global phase factor, corresponding to the arbitrariness of
the phase in the basis|n⟩. However, this phase factor cancels ase−iϕneiϕn = 1 between|n⟩ and⟨n|,
and does not appear for QCD physical quantities including the Wilson loop.

3.5 Dirac-mode Expansion and Projection

From the completeness of the Dirac-mode basis,∑n |n⟩⟨n|=1, we getÔ=∑m∑n |m⟩⟨m|Ô|n⟩⟨n|
for arbitrary operators. Based on this relation, the Dirac-mode expansion and projection can be de-
fined. We define the projection operatorP̂ which restricts the Dirac-mode space,

P̂≡ ∑
n∈A

|n⟩⟨n|, (3.11)

whereA denotes arbitrary set of Dirac modes. InP̂, the arbitrary phase cancels between|n⟩ and⟨n|.
One findsP̂2 = P̂ andP̂† = P̂. The typical projections are IR-cut and UV-cut of the Dirac modes:

P̂ IR ≡ ∑
|λn|≥ΛIR

|n⟩⟨n|, P̂UV ≡ ∑
|λn|≤ΛUV

|n⟩⟨n|. (3.12)

8
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Using the projection operator̂P, we define the Dirac-mode projected link-variable operator,

ÛP
µ ≡ P̂Ûµ P̂= ∑

m∈A
∑
n∈A

|m⟩⟨m|Ûµ |n⟩⟨n|. (3.13)

During this projection, there appears some nonlocality in general, but it would not be important
for the argument of large-distance properties such as confinement. From the Wilson-loop operator
Ŵ ≡ ∏N

k=1Ûµk, we define the Dirac-mode projected Wilson-loop operator,

ŴP ≡
N

∏
k=1

ÛP
µk
= ÛP

µ1
ÛP

µ2
· · ·ÛP

µN
= P̂Ûµ1P̂Ûµ2P̂· · · P̂ÛµNP̂

= ∑
n1,n2,···,nN+1∈A

|n1⟩⟨n1|Ûµ1|n2⟩⟨n2|Ûµ2|n3⟩ · · · ⟨nN|ÛµN |nN+1⟩⟨nN+1|. (3.14)

Then, we obtain the functional trace of the Dirac-mode projected Wilson-loop operator,

Tr ŴP = Tr
N

∏
k=1

ÛP
µk
= Tr ÛP

µ1
ÛP

µ2
· · ·ÛP

µN
= Tr P̂Ûµ1P̂Ûµ2P̂· · · P̂ÛµNP̂

= tr ∑
n1,n2,···,nN∈A

⟨n1|Ûµ1|n2⟩⟨n2|Ûµ2|n3⟩ · · · ⟨nN|ÛµN |n1⟩, (3.15)

which is manifestly gauge invariant. Here, the arbitrary phase factor cancels between|nk⟩ and⟨nk|.
Its gauge invariance is also numerically checked in the lattice QCD Monte Carlo calculation.

From TrŴP(R,T) corresponding to theR×T rectangular loop, we define the Dirac-mode
projected inter-quark potential,

VP(R)≡− lim
T→∞

1
T

ln{Tr ŴP(R,T)}, (3.16)

which is also manifestly gauge-invariant. In the unprojected case ofP̂= 1, the ordinary inter-quark
potential is obtained apart from an irrelevant constant,

V(R) =− lim
T→∞

1
T

ln{Tr Ŵ(R,T)}=− lim
T→∞

1
T

ln⟨W(R,T)⟩+ irrelevant const., (3.17)

because of Tr̂W = ⟨W⟩ ·Tr 1, as was derived in Eq.(3.8).

3.6 Analysis of Confinement in terms of Dirac Modes in QCD

We consider various projection spaceA in the Dirac-mode space, e.g., IR-cut or UV-cut of
Dirac modes. With this Dirac-mode expansion and projection formalism, we calculate the Dirac-
mode projected inter-quark potentialVP(R) in a gauge-invariant manner. In particular, using IR-cut
of the Dirac modes, we directly investigate the role of low-lying Dirac modes to confinement, since
the low-lying modes are responsible to chiral symmetry breaking.

As a technical difficulty of this formalism, we have to deal with huge dimensional matrices
and their products. Actually, the total matrix dimension of⟨m|Ûµ |n⟩ is (Dirac-mode number)2. On
theL4 lattice, the Dirac-mode number isL4×Nc× 4, which can be reduced to be aboutL4×Nc,
using the Kogut-Susskind technique [2, 4]. Even for the projected operators, where the Dirac-mode

9
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space is restricted, the matrix is generally still huge. At present, we use a small-size lattice in the
actual lattice QCD calculation.

We use SU(3) lattice QCD atβ = 5.6 (i.e.,a≃ 0.25fm) on 64 at the quenched level. We show
in Fig.6(a) the spectral densityρ(λ ) of the QCD Dirac operator /D. The chiral property of /D leads
to ρ(−λ ) = ρ(λ ). Figure 6(b) is the IR-cut Dirac spectral densityρIR(λ ) ≡ ρ(λ )θ(|λ | −ΛIR)

with the IR-cutoffΛIR = 0.5a−1 ≃ 0.4GeV. By removing the low-lying Dirac modes, the chiral
condensate is largely reduced as⟨q̄q⟩ΛIR/⟨q̄q⟩ ≃ 0.02 around the physical region ofm≃ 5MeV.
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Figure 6: (a) The Dirac spectral densityρ(λ ) in lattice QCD atβ=5.6 and 64. The volumeV is multiplied.
(b) The IR-cut Dirac spectral densityρIR(λ )≡ ρ(λ )θ(|λ |−ΛIR)with the IR-cutoffΛIR =0.5a−1≃0.4GeV.

Figure 7 shows the inter-quark potentialVP(R) after removing low-lying Dirac modes, which
is obtained in lattice QCD with the IR-cut ofρIR(λ )≡ ρ(λ )θ(|λ |−ΛIR) with the IR-cutoffΛIR =

0.5a−1. Remarkably, no significant change is observed on the inter-quark potential besides an
irrelevant constant, that is, the confining force is almost unchanged, even after removing the low-
lying Dirac modes, which are responsible to chiral symmetry breaking. This result indicates that
one-to-one correspondence does not hold for confinement and chiral symmetry breaking in QCD.
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 0  1  2  3

V
 (
R

) 
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R  [a]

Figure 7: The circle symbol denotes the lattice QCD result of the inter-quark potential after removing low-
lying Dirac modes, obtained with the IR-cut ofρIR(λ )≡ ρ(λ )θ(|λ |−ΛIR) with the IR-cutoffΛIR = 0.5a−1.
The square symbol denotes the original inter-quark potential. The potential is almost unchanged even after
removing the low-lying Dirac modes, apart from an irrelevant constant.

We also investigate the UV-cut of Dirac modes in lattice QCD, and find that the confining force
is almost unchanged by the UV-cut. This result seems consistent with the pioneering lattice study
of Synatschke-Wipf-Langfeld [21]: they found that the confinement potential is almost reproduced
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only with low-lying Dirac modes, using the spectral sum of the Polyakov loop [22]. Furthermore,
we examine “intermediate-cut”, where a certain part ofΛ1 < |λn|< Λ2 of Dirac modes is removed,
and obtain almost the same confining force. Then, we conjecture that the “seed” of confinement is
distributed not only in low-lying Dirac modes but also in a wider region of the Dirac-mode space.

3.7 Discussions on “Confinement̸= Chiral Symmetry Breaking” in QCD

Here, we discuss the obtained result of “confinement̸= chiral symmetry breaking”. As for
their close relation via monopoles discussed in Sec.3.2, the monopole would be essential degrees
of freedom for most nonperturbative QCD: confinement [18], chiral symmetry breaking [15], and
instantons [20]. In fact, removing the monopole would be “too fatal” for the nonperturbative prop-
erties, so that nonperturbative QCD phenomena are simultaneously lost by their cut.

As shown in Fig.8, the Dirac zero-mode associated with an instanton is localized around it
[8]. However, the localized objects are hard to contribute to the large-distance phenomenon of
confinement, although such low-lying Dirac modes contribute to chiral symmetry breaking.

Recall that instantons contribute to chiral symmetry breaking, but do not directly lead to con-
finement [8]. Then, as a thought experiment, if only instantons can be carefully removed from
the QCD vacuum, confinement properties would be almost unchanged, but the chiral condensate
is largely reduced, and accordingly some low-lying Dirac modes disappear. Thus, in this case,
confinement is almost unchanged, in spite of the large reduction of low-lying Dirac modes.

Figure 8: Around each instanton, the Dirac zero-mode is localized, and such low-lying Dirac modes con-
tribute to chiral symmetry breaking. However, the localized objects are hard to contribute to confinement.

If their relation is not one-to-one, richer phase structure is expected in QCD. For example, the
phase transition point can be different between deconfinement and chiral restoration in the presence
of strong electro-magnetic fields, because of their nontrivial effect on chiral symmetry [23].

4. Summary and Concluding Remarks

First, we have studied the relevant gluon-momentum region for confinement in lattice QCD,
based on the Fourier expansion. Remarkably, the string tensionσ is almost unchanged even after
removing the high-momentum gluon component above 1.5GeV in the Landau gauge. We then have
concluded that confinement originates from the low-momentum gluon component below 1.5GeV,
which is the upper limit to contribute toσ .
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Second, we have developed a manifestly gauge-covariant expansion using the eigen-mode of
the QCD Dirac operator /D = γµDµ . With this method, we have performed a direct investigation
of correspondence between confinement and chiral symmetry breaking in lattice QCD. As a re-
markable fact, the confinement force is almost unchanged even after removing the low-lying Dirac
modes, which are responsible to chiral symmetry breaking. This indicates that one-to-one corre-
spondence does not hold for between confinement and chiral symmetry breaking in QCD.
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