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Leading order QCD in Coulomb gauge Peter Watson

1. Introduction

The Dyson-Schwinger equations of Coulomb gauge quantum chromodynamics (QCD) rep-
resent one of the many techniques being currently explored in the hope of one day being able to
describe confinement and the hadron spectrum from first principles. As with most difficult prob-
lems, it is useful to be able to compare and contrast different approaches to gain further insight.
One aim of this talk is to compare a leading order truncation of the Dyson-Schwinger equations
[1] to the gap equations for the static gluon and quark propagators obtained within a quasi-particle
approximation to the canonical Hamiltonian approach [2, 3,4].

The talk starts with a brief review of Coulomb gauge within the first order formalism, including
a discussion of the charge constraint that emerges from the incompleteness of the gauge fixing. To
avoid problems stemming from the nonlocality of this formalism, an Ansatz is introduced such that
the Dyson-Schwinger equations can be derived. The reduction of the truncated Dyson-Schwinger
equations to the gap equations for the static propagators and the link to heavy quarks will be shown.
How the heavy quark limit provides an intuitive explanationfor the charge constraint and infrared
divergences as being unobservable constant shifts in the potential will be discussed.

2. Coulomb gauge in the first order formalism

Let us begin by considering the functional integral associated with QCD (in Minkowski space):

Z =

∫

DΦeıSQCD, SQCD =

∫

dx

{

qαx

[

ıγ0D0x + ı~γ ·~Dx−m
]

αβ
qβx +

1
2
~Ea

x ·~Ea
x −

1
2
~Ba

x·~Ba
x

}

(2.1)

whereDΦ generically represents the functional integration measure over all fields present. The
(conjugate) quark field is (q) qβx where the fundamental color, spin and flavor indices are denoted
collectively with the indexβ and the position argument with subscriptx. The Diracγ-matrices obey
the usual Clifford algebra{γµ ,γν} = 2gµν with metricgµν = diag(1,−~1) (we explicitly extract all
the minus signs associated with the metric such that all components of a spatial vector~x are written
with subscripts, i.e.,xi). The temporal and spatial components of the covariant derivative in the
fundamental color representation are given by

D0x = ∂0x− ıgσa
x Ta, ~Dx =~∇x + ıg~Aa

xTa (2.2)

whereσa
x (= A0a

x ) and~Aa
x are the temporal and spatial components of the gluon field, respectively,

and where the superscripta denotes the color index in the adjoint representation. The generators
obey

[

Ta,Tb
]

= ı f abcTc, where thef abc are the structure constants and we use the normalization
Tr[TaTb] = δ ab/2. The chromoelectric and chromomagnetic fields are writtenin terms of the gluon
field as

~Ea
x = −∂0x~A

a
x −~Dab

x σb
x , ~Ba

x = ~∇x×~Aa
x−

1
2

g fabc~Ab
x×~Ac

x (2.3)

with the spatial component of the covariant derivative in the adjoint representation given by

~Dab
x = δ ab~∇x−g facb~Ac

x. (2.4)

The QCD action is invariant under gauge transformsA→Aθ =UAU†− ı/g(∂U)U†, q→ qθ =

Uq, whereUx = exp{−ıθa
x Ta} is a spacetime element of theSU(Nc) group parametrized byθa

x .
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Because of this invariance, the functional integral contains a divergence due to the integration over
the gauge group. When calculating Green’s functions such aspropagators, it is thus necessary to
fix the gauge and our choice is Coulomb gauge:~∇ ·~A = 0. The Faddeev-Popov (FP) technique to
fix the gauge involves inserting the identity

1 =

∫

Dθδ
(

F
[

σ θ ,~Aθ
])

Det
[

Mab(x,y)
]

, Mab(x,y) =
δFa

[

σ θ
x ,~Aθ

x

]

δθb
y

∣

∣

∣

∣

∣

∣

F=0

(2.5)

into the functional integral. However, in Coulomb gauge where F = ~∇ ·~A and the FP kernel reads
M(x,y) ∼ −~∇x ·~Dxδ (x− y), there is an obvious problem when the gauge transform parameter θa

x

is spatially independent:
−~∇x ·~Dab

x θb(x0) = 0 (2.6)

(there are no temporal derivatives) such that the FP determinant automatically vanishes. Coulomb
gauge is incomplete in this respect. The resolution of the temporal zero modes of the FP operator
leads to a constraint on the total color charge of the system in the first order formalism [5]. The
identity, Eq. (2.5), is modified to

1 =
∫

Dθ δ
(

F
[

σ θ ,~Aθ
])

Det
[

Mab(x,y)
]

(2.7)

whereDθ andDet explicitly exclude the temporal zero modes,θ(x0). The Coulomb gauge fixed
functional integral is thus

Z =
∫

DΦδ
(

~∇·~A
)

Det
[

−~∇·~D
]

eıSQCD. (2.8)

The conversion to the first order formalism goes as follows [6, 7, 5]. An auxiliary vector field (~π)
is introduced via

exp

{

ı
∫

dx
1
2
~Ea

x ·~Ea
x

}

=
∫

Dπ exp

{

ı
∫

dx

[

−1
2
~πa

x ·~πa
x −~πa

x ·~Ea
x

]}

(2.9)

and split up into components (φ is the longitudinal part of~π) with

const=
∫

DφDτ exp

{

−ı
∫

dxτa
x

(

~∇x·~πa
x +~∇2

xφa
x

)

}

. (2.10)

Changing variables~π →~π−~∇φ and integrating out the Lagrange multiplier, the functional integral
now has the form

Z =
∫

DΦδ
(

~∇·~A
)

δ
(

~∇·~π
)

Det
[

−~∇·~D
]

eıS ′
, (2.11)

where the action,S ′, is at most linear in the temporal gauge field,σ : the corresponding term is

Sσ =

∫

dxσa
x

(

~∇x·~Dab
x φb

x +g fabc~Ab
x·~πc

x +gqαx[γ0Ta]αβ qβx

)

. (2.12)

(Incidentally, the above form of the functional integral isthe starting point for studying perturbation
theory in the first order formalism [7, 8, 9].) Importantly, theσ -field can be integrated out to give

Z =

∫

DΦδ
(

~∇·~A
)

δ
(

~∇·~π
)

Det
[

−~∇·~D
]

δ
(

~∇·~Dφ + ρ̂
)

e(ıS ′′) (2.13)
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where the color charge,̂ρ, includes both gluonic and quark contributions:

ρ̂a
x = g fabc~Ab

x·~πc
x +gqαx[γ0Ta]αβ qβx. (2.14)

Theφ field can be integrated out by using the eigenfunctions of theFaddeev-Popov operator as a
complete orthonormal basis for an expansion, the crucial point being that one must remember the
temporal zero modes [5]. Including theφ -dependent part of the action, the explicit expression is

∫

Dφδ
(

~∇·~Dφ + ρ̂
)

exp

{

ı
2

∫

dxφa
x
~∇2

xφa
x

}

= δ
(

∫

d~xρ̂
)

Det
[

−~∇·~D
]−1

exp

{

− ı
2

∫

dxρ̂a
x F̂ab

x ρ̂b
x

}

(2.15)
where

F̂ab
x =

[

−~∇x·~Dac
x

]−1(

−~∇2
x

)[

−~∇x·~Dcb
x

]−1
. (2.16)

Notice the appearance of theinverse(modified) FP determinant, that will cancel against the original
in the functional integral. Theδ -functional constraint that emerges constrains the total color charge,
the spatial integral arising from the projection onto the temporal zero mode. In order to study its
effect, we rewrite thisδ -functional constraint in Gaussian form [1]:

δ
(

∫

d~xρ̂
)

∼ lim
C→∞

N (C )exp

{

− ı
2

∫

dxdyρ̂a(x)C δ abδ (x0−y0)ρ̂b(y)

}

(2.17)

whereC is a constant,N (C ) is a normalization factor to be included implicitly in the functional
integral measure, and the limitC → ∞ will be taken only at the end of any calculation. With this,
our functional integral now reads

Z =
∫

DΦδ
(

~∇·~A
)

δ
(

~∇·~π
)

eıS , (2.18)

with the action

S =

∫

dx

{

qαx

[

ıγ0∂0x + ı~γ ·~Dx−m
]

αβ
qβx−

1
2
~Ba

x·~Ba
x−

1
2
~πa

x ·~πa
x +~πa

x ·∂0x~A
a
x

}

−1
2

∫

dxdyρ̂a
x F̃ab(x,y)ρ̂b

y (2.19)

and whereF̃ is the Coulomb kernel, but shifted by a spatial constant proportional toC :

F̃ab(x,y) = F̂ab
x δ (x−y)+C δ abδ (x0−y0). (2.20)

There exists a useful connection between the Coulomb kerneland the temporal gluon propagator
[10]. Redoing the analysis for the functional integral in the presence of a source (ρ) for the temporal
gluon field, the temporal gluon propagator is defined as

Wab
σσ (x,y) =

1
Z[ρ ]

δ 2Z[ρ ]

δ ıρa
x δ ıρb

y

∣

∣

∣

∣

ρ=0

. (2.21)

The presence of the sourceρ only alters the above action, Eq. (2.19), by replacingρ̂ with ρ =

ρ̂ + ρ . As noted [10], the temporal gluon propagator has a purely instantaneous part given by the

4



P
o
S
(
Q
C
D
-
T
N
T
-
I
I
)
0
5
1

Leading order QCD in Coulomb gauge Peter Watson

expectation value of the Coulomb kernel since it involves only spatial derivatives. In our case,
where the kernel is shifted by a constant, we see that

Wab
σσ (x,y) ∼<ıFab

x δ (~x−~y)+ ıC δ ab> δ (x0−y0)+non-inst. (2.22)

To recap, by writing the Coulomb gauge functional integral in the first order formalism, the FP
determinant cancels after integrating out the temporal andlongitudinal fields and Coulomb gauge is
thus ghost-free [6, 7]. What remains of the gluon field are thetwo transverse vector components~A
and~π (which would give rise to the two polarization states of photons in quantum electrodynamics).
Treating the temporal zero modes of the FP operator explicitly, it is further seen that the total color
charge must be conserved and vanishing [5]. This is nothing more than the application of Gauss’
law. Writing the total charge constraint in Gaussian form, the Coulomb kernel is shifted by a spatial
constant – eventually however, we must take the limit where this constant diverges. We shall see
though that this is not a problem in the end.

3. Truncated Dyson-Schwinger equations

Having written down our functional integral in the first order formalism, we would like to use
it. Unfortunately, the Coulomb kernel term (F̃) is nonlocal because of the presence of the inverse
FP operator. In order to derive Dyson-Schwinger equations,we therefore make a truncation Ansatz
whereby we replace the Coulomb kernel with its expectation value [1]:

F̃ab(x,y) → [F(~x−~y)+C ]δ abδ (x0−y0) (3.1)

whereF is now some purely spatial, scalar function which will serveas nonperturbative input into
the system. Note that this Ansatz still includes the tree-level term, such that one-loop perturbative
results could still be obtained at this stage. The action is now local, and given the form of the color
chargeρ̂ , Eq. (2.14), the Coulomb interaction term̂ρF̃ρ̂ now involves a set of effective four-point
vertices (see below for their explicit form). In effect, by converting to the first order formalism,
we replace the dynamics of the nonperturbative towers of Dyson-Schwinger equations [7] and
Slavnov-Taylor identities [11] involving the temporal (σ ), longitudinal (φ ) and ghost degrees of
freedom with our leading order Ansatz forF.

Since we have only modified the Coulomb interaction part of the action, many of the propa-
gator and vertex Green’s functions in the present formalismcan be read off from previous studies
[7, 9]. In particular, the propagators (W in our notation) in momentum space are given by:

Wab
AAi j(k) = ıδ abti j (~k)

Γππ(k)
∆g(k)

,

Wab
Aπ i j (k) = −δ abk0ti j (~k)

ΓAπ(k)
∆g(k)

,

Wab
ππ i j (k) = ıδ ab~k2ti j (~k)

ΓAA(k)
∆g(k)

,

Wqqαβ (k) = − ı
∆ f (k)

[

γ0k0At(k)−~γ ·~kAs(k)+Bm(k)+ γ0k0~γ ·~kAd(k)
]

αβ
,

∆g(k) = k2
0Γ2

Aπ(k)−~k2ΓAA(k)Γππ(k)+ ı0+,

∆ f (k) = k2
0A2

t (k)−~k2A2
s(k)−B2

m(k)+k2
0
~k2A2

d(k)+ ı0+, (3.2)
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where the various dressing functions arise from the decompositions of the proper two-point func-
tions (Γ):

Γab
ππ i j (k) = ıδ ab

[

δi j Γππ(k)+ l i j (~k)Γππ(k)
]

,

Γab
Aπ i j (k) = δ abk0

[

δi j ΓAπ(k)+ l i j (~k)ΓAπ(k)
]

= Γab
πAi j(−k),

Γab
AAi j(k) = ıδ ab~k2

[

ti j (~k)ΓAA(k)+ l i j (~k)ΓAA(k)
]

,

Γ(0)
qqαβ (k) = ı

[

γ0k0At(k)−~γ ·~kAs(k)−Bm(k)+ γ0k0~γ ·~kAd(k)
]

αβ
. (3.3)

In the above,l i j andti j are the usual longitudinal and transverse spatial projectors, respectively. The
components of the gluon propagator are spatially transverse because we are in Coulomb gauge. The
dressing functions are all scalar functions ofk2

0 and~k2 separately, due to the noncovariance. At tree-
level Γππ = ΓAπ = ΓAA = At = As = 1, Bm = m and all others vanish. Notice the matrix inversion
structure of the components of the gluonic and quark propagators, with the denominator factors∆g

and∆ f – these will turn out to be important. The tree-level quark-gluon (ΓqqA), three- (ΓAAA) and
four-gluon (ΓAAAA) vertices are also unaltered from [7, 9], although their explicit form will not be
needed here. With our Ansatz to replace the Coulomb kernel with its expectation value, the new
tree-level vertices explicitly read [1] (all momenta incoming)

Γ(0)abcd
AAππ i jkl (k1,k2,k3,k4) = −ıg2

[

f ead f f bcδil δ jkF̃e f(k1+k4)+ f ebdf f acδ jl δikF̃e f(k1+k3)
]

,

Γ(0)ab
qqAπαβ i j (k1,k2,k3,k4) = ıg2 f abe

[

γ0T f
]

αβ δi j F̃
e f(k1+k2),

Γ(0)
qqqqαβγδ (k1,k2,k3,k4) = −ıg2[γ0Ta]

αβ

[

γ0Tb
]

γδ
F̃ab(k1+k2)+ ıg2[γ0Ta]

αδ

[

γ0Tb
]

γβ
F̃ba(k1+k4).

(3.4)

With a little practice, the Dyson-Schwinger equations are not difficult to derive (although keep-
ing track of the signs when quarks are present is somewhat tedious). Generically, their structure
arises from the Legendre transform and repeated functionaldifferentiation of the generating func-
tional, giving the characteristic sequence of loop integrals. Such a derivation in Coulomb gauge is
given in Refs. [7, 12, 9]. Omitting the two-loop contributions, the Dyson-Schwinger equations for
the proper two-point functions, in the system considered here [1], are presented diagrammatically
in Figs. 1 and 2. Because of the existence of the mixed gluon propagatorWAπ , certain loops
involve a sum over the two gluonic field types~A, ~π which is denoted by~B and~C in the diagrams.
In addition to the truncation to omit two-loop contributions, we further restrict to considering only
those terms arising from the tree-level four-point vertices involving the Coulomb kernel̃F, i.e.,
we throw away theΓqqA, ΓAAA andΓAAAA tree-level vertices. The remaining loops of the Dyson-
Schwinger equations are thus tadpole contributions involving the propagators and our input Ansatz
for F̃, forming a closed set of equations. The input we have in mind is motivated by the connection
to the instantaneous part of the temporal gluon propagator.In momentum space and omitting the
perturbative contributions, we will assume the strongly infrared enhanced form:

g2CF F̃ab(k) = δ abF(~k2)+ δ ab
C (2π)3δ (~k), F(~k2) = 8πσc/~k

4 (3.5)

whereCF = (N2
c −1)/2Nc andσc is the Coulomb string tension [13]. Note thatg2F̃ is a renormal-

ization group invariant quantity in Coulomb gauge [6, 10], so is ideal for use as input. We shall

6
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Figure 1: Dyson-Schwinger equations forΓππ , ΓπA andΓAA, omitting two-loop terms. Wavy lines denote
proper functions, the large filled blob indicating the dressed function. Springs denote gluonic propagators,
lines denote the quark propagator and all internal propagators are dressed. Small blobs indicate tree-level
vertices and large circles denote dressed vertices. The gluonic field types~B and~C denote the sum over~A and
~π contributions arising due to the presence of mixed gluon propagators. See text for details.

show that this truncation results in gap equations for the static gluon and quark propagator dressing
functions that can be compared to those derived in the canonical Hamiltonian approach, Refs. [2]
and [4], respectively.

4. Leading order static gluon equation

Let us consider the truncated Dyson-Schwinger equation forthe mixed gluonic proper two-
point function,ΓπA (middle line of Fig. 1). Recognizing that the color structure of the quark tadpole
loop vanishes, the equation can be written (d̄ω = d4ω/(2π)4)

δi j ΓAπ(k)+ l i j (~k)ΓAπ(k) = δi j − ıg2Nc

∫

d̄ω ω0ΓAπ(ω)

k0∆g(ω)
ti j (~ω)F̃(k−ω) (4.1)

where we have expanded the two-point functions using Eqs. (3.2,3.3) and the four-point function,
Eq. (3.4), subsequently resolving the color structure. Since F̃ is energy independent (coming from
the instantaneous Coulomb kernel) and all dressing functions are even functions of energy, the
energy integral of the above is overall odd and vanishes. This immediately gives the results

ΓAπ = 1, ΓAπ = 0, ∆g(k) = k2
0−~k2ΓAA(k)Γππ(k)+ ı0+. (4.2)

7
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Figure 2: Dyson-Schwinger equation for the quark two-point function, omitting two-loop terms. On the left-
hand side, the filled blob indicates the dressed (inverse) propagator, otherwise notation is as in the previous
figure. See text for details.

Turning to the truncated Dyson-Schwinger equations forΓππ andΓAA (first and last lines of Fig. 1,
respectively), after sorting out the decompositions and color factors as above, we have (the longi-
tudinal dressing functionsΓππ andΓAA play no role here)

Γππ(k) = 1+
ı
2

g2Nc

∫

d̄ω Γππ(ω)

∆g(ω)
F̃(k−ω)t ji (~k)ti j (~ω),

ΓAA(k) = 1+
ı
2

g2Nc

∫

d̄ω ~ω2ΓAA(ω)

~k2∆g(ω)
F̃(k−ω)t ji (~k)ti j (~ω). (4.3)

The energy integrals do not involvek0 because of the energy independence ofF̃ and we thus see
that Γππ andΓAA are energy independent. The energy dependence of the denominator factor∆g

is now reduced such that we can now define the static (i.e., energy integrated or equaltime) gluon
propagator in terms of a single dressing function,G [1]:

W(s)ab
AAi j (~k) =

∫

dk0

2π
Wab

AAi j(k) = δ abti j (~k)
1

2|~k|
G(~k2)1/2, G = Γππ/ΓAA. (4.4)

A similar expression exists for the staticπ-propagator,W(s)
ππ . Further inserting the Ansatz form for

F̃ from Eq. (3.5) and writing the spatial integrals in terms ofG, the equations become

Γππ(~k2) = 1+
Nc

2CF

C
√

~k2
G(~k2)1/2 +

Nc

4CF

∫

d̄~ω√
~ω2

G(~ω2)1/2F(~k−~ω)t ji (~k)ti j (~ω),

ΓAA(~k
2) = 1+

Nc

2CF

C
√

~k2
G(~k2)−1/2 +

Nc

4CF

∫

d̄~ω√
~ω2

~ω2

~k2
G(~ω2)−1/2F(~k−~ω)t ji (~k)ti j (~ω) (4.5)

where d̄~ω = d~ω/(2π)3. The proper dressing functionsΓππ andΓAA have contributions linear in
C (the constant that arises from the charge conservation) andalso from the potentially infrared
divergent spatial integrals overF ∼ 1/(~k− ~ω)4, if we use Eq. (3.5) as input. However, further
utilizing the definition ofG, Eq. (4.4), we find that we can combine the above coupled equations
into a single equation for the static gluon propagator dressing function:

G(~k2) = 1+
1
4

Nc

CF

∫

d̄~ω√
~ω2

F(~k−~ω)t ji (~k)ti j (~ω)

[

G(~ω2)1/2− ~ω2

~k2

G(~k2)

G(~ω2)1/2

]

. (4.6)

8
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This is the gluon gap equation and is identical to that originally derived from the canonical approach
[2]. The troublesome terms proportional toC drop out and the infrared divergence of the spatial
integrals is canceled (this is explicitly verified in [1]). It thus appears that under this (leading order)
truncation, the static gluon propagator contains the physical dynamics of the system whereas the
full propagator (in particular, its pole position) is unphysical. We shall discuss this at the end of
the next section. It is known that for an interaction of the type given by Eq. (3.5), the solution
to Eq. (4.6) is of the massive type [1, 2], in contradiction tothe expected Gribov type solution
[14]. However, from the canonical approach, it is known thatthe gap equation receives significant
infrared contributions from the ghost loop (‘curvature’) [3] which is missing from the leading order
truncation presented here.

5. Leading order quarks and the heavy limit

The analysis for the quark Dyson-Schwinger equation is verysimilar to that previously de-
scribed for the gluon. This similarity arises because the color chargeρ̂, Eq. (2.14), treats the
gluonic and quark contributions on an equal footing. Truncating the equation (Fig. 2), inserting
the appropriate factors, Eqs. (3.2,3.3,3.4), resolving the color factors and projecting out the Dirac
components, we obtain four coupled equations (one for each of the dressing functions). Two are
trivial because they involve odd energy integrals:

At(k) = 1− ıg2CF

∫

d̄ω ω0At(ω)F̃(k−ω)

k0∆ f (ω)
,

Ad(k) = ıg2CF

∫

d̄ω ω0~k·~ωAd(ω)F̃(k−ω)

k0~k2∆ f (ω)
, (5.1)

such that

At = 1, Ad = 0, ∆ f (k) = k2
0−~k2A2

s(k)−B2
m(k)+ ı0+. (5.2)

The other two equations are

As(k) = 1+ ıg2CF

∫

d̄ω~k·~ωAs(ω)F̃(k−ω)

~k2∆ f (ω)
,

Bm(k) = m+ ıg2CF

∫

d̄ω Bm(ω)F̃(k−ω)

∆ f (ω)
, (5.3)

where the energy independence ofF̃ again means thatAs andBm are purely spatial. As for the
gluon, we can now write the static quark propagator in terms of a single dressing function,M:

W(s)
qqαβ (~k) =

∫

dk0

2π
Wqqαβ (k) =

[

~γ ·~k−M(~k2)
]

αβ

2
√

~k2 +M(~k2)2
, M(~k2) =

Bm(~k2)

As(~k2)
. (5.4)
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Inserting the form ofF̃ given by Eq. (3.5), these equations become

As(~k
2) = 1+

1
2

C
√

~k2 +M(~k2)2
+

1
2

∫

d̄~ω~k·~ωF(~k−~ω)

~k2
√

~ω2 +M(~ω2)2
,

Bm(~k2) = m+
1
2

C M(~k2)
√

~k2 +M(~k2)2
+

1
2

∫

d̄~ω M(~ω2)F(~k−~ω)
√

~ω2 +M(~ω2)2
. (5.5)

Like for the gluon, the dressing functions for the quark propagator are also linear inC and in-
volve potentially infrared divergent spatial integrals. However, the coupled equations can also be
combined into a single gap equation forM:

M(~k2) = m+
1
2

∫

d̄~ω F(~k−~ω)
√

~ω2 +M(~ω2)2

[

M(~ω2)−
~k·~ω
~k2

M(~k2)

]

(5.6)

where theC -dependence and the potential infrared divergence cancels(also verified explicitly in
Ref. [1]). This equation is very well-known as the Adler-Davis truncation [4] and was originally
derived using the canonical approach. With the interaction, Eq. (3.5), the solution does exhibit dy-
namical chiral symmetry breaking [1, 4], but to a quantitatively too small degree for phenomenol-
ogy – this leading order truncation requires further contributions [15].

It is possible to make the connection between the truncated quark propagator and the known
Coulomb gauge heavy quark limit [16] (see also Carina Popovici’s contribution to these proceed-
ings). This is done via a spin-decomposition of the full quark propagator [17]. Introducing the spin
projectors

P± = (1± γ0)/2, P+ +P− = 1 (5.7)

the full quark propagator can be written as

Wqqαβ (k) = [(P+ +P−)Wqq(k)(P+ +P−)]αβ . (5.8)

We now consider the heavy quark limit in the Coulomb gauge rest frame: |~k|/m→ 0. Using
Eq. (5.6), we can make an estimate for the static dressing functionM (this is confirmed numerically
in [1]). The functionF(~k−~ω) peaks at~ω =~k but the bracketed combination of functions vanishes,
canceling the infrared divergence and leaving

M(~k2) ≈ m+#
M(~k2)

√

~k2 +M2(~k2)

|~k|≪m→ m+# (5.9)

so that from Eq. (5.5), the functionsAs andBm are given by

As(~k
2)

|~k|≪m→ 1+O(1/m)

Bm(~k2)
|~k|≪m→ m+

1
2
C +

1
2

∫

d̄~ω F(~ω2) = Bh (5.10)

where forBm it is recognized that the infrared divergence of the integral is not suppressed by factors
of 1/m, and forAs we demand thatm is the largest scale (the limitC → ∞ is taken only at the end).
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The spin-decomposed quark propagator is then

Wqqαβ (k)
|~k|≪m→ (−ı)

[k2
0−B2

h+ ı0+]
{[k0 +Bh]P+P+− [k0−Bh]P−P−}αβ

= −ı
[P+P+]αβ

[k0−Bh+ ıε ]
+ ı

[P−P−]αβ

[k0 +Bh− ıε ]
. (5.11)

The first component represents a heavy quark propagating forward in time (the second is the anti-
quark propagating backwards in time) and explicitly agreeswith the expression found in Ref. [16].
Further, when considering the heavy quark limit of the Bethe-Salpeter equation, the Faddeev equa-
tion or the quark four-point function, the constantC and infrared divergent spatial integral occur-
ring in Bh cancel explicitly when the quarks are in a color singlet configuration (and only for these
configurations). The Bethe-Salpeter equation moreover furnishes the result that

V(r) ∼
∫

d̄~ω F(~ω2)(1−eı~ω·~r) (5.12)

(r is a length scale) so that the connection between the Coulombkernel,F, and the quark-antiquark
potential,V, is made explicit.

The connection to the heavy quark limit is rather important,because it explains the role of the
constantC (arising from the charge constraint) and the infrared divergences. Within the leading
order truncation presented here, the physical dynamics arecontained within the static propagator
dressing functions and their gap equations. The full propagators have pole positions that are de-
pendent onC and the infrared divergence. As the pole positions are shifted to infinity in the limit
C → ∞ (i.e., when the total color charge is conserved and vanishing) and as the infrared integrals
diverge, this simply reflects the fact that infinite energy isrequired to create isolated colored par-
ticles from the colorless vacuum. However, for physical color singlets the divergent contributions
cancel. It thus appears that the constantC and the infrared divergence are merely constant shifts in
the potential and which are not observable.

6. Summary

In summary, a leading order truncation to the Dyson-Schwinger equations of Coulomb gauge
within the first order formalism has been presented. BecauseCoulomb gauge is incomplete, the
temporal zero modes must be taken into account and it is seen that this results in a nonperturbative
constraint on the total color charge. In the Coulomb gauge first order formalism, the ghosts cancel
but the resulting action is nonlocal. To derive the Dyson-Schwinger equations, an Ansatz is thus
made to replace the nonlocal Coulomb kernel with its expectation value. This introduces a set of
four-point interaction vertices, which are dependent on the input Ansatz for the Coulomb kernel
(F). Truncating the system to include only the tadpole diagrams involving this input Ansatz leads
to a closed set of equations (their solution is discussed in Ref. [1]). Importantly, these equations
reduce to the gap equations for the static gluon and quark propagators obtained from a quasi-particle
approximation in the canonical Hamiltonian approach, Refs. [2] and [4], respectively. Furthermore,
the known Coulomb gauge heavy quark limit [16] emerges. It isseen that the static propagator gap
equations are not affected by the charge constraint or the infrared divergence of the input Ansatz,
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F . This is in contrast to the full propagators, which are dependent. However, the connection
to the heavy quark limit supplies an explanation: such unphysical singularities cancel for color
singlet states, whereas the pole positions of colored propagators are shifted to infinity, reflecting
that infinite energy is required for these to be created in isolation from the vacuum.
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