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1. Introduction

The non-perturbative gluon and ghost propagators may be obtained from their Schwinger-
Dyson Equations (SDEs). They are interesting quantities that provide important information when
studying confinement and dynamical chiral symmetry breaking in Quantum Chromodynamics
(QCD). They are necessary inputs for studying bound states and amongst other things, can be
used to obtain non-perturbative predictions for the running coupling αs. A number of early stud-
ies [1, 2, 3, 4, 5] found various singularities in the vanishing p2 limit for the non-perturbative
propagator dressings. However, more recent results from a variety of methods have found the
dressings to be finite [6, 7, 8, 9, 10, 11, 12].

In a recent study [13], the gluon and ghost propagator dressings, in the absence of quarks,
were studied. The SDEs were solved self-consistently using a range of approximations for the
vertices. Emphasis was given to how well these quantities are determined – particularly in the
physical region around 0.1 and 1 GeV. It turns out that the vertices are indeed very important if
numerically precise results are desired.

Landau gauge is used, since for this kind of problem it is the most appealing theoretically.
The non-perturbative corrections to the ghost-gluon vertex are simplest in Landau gauge and state-
ments regarding confinement are typically formulated in Landau gauge also. Furthermore, there
are several lattice results to which we may compare.

The dressing functions that we solve for are related directly to the propagators, which for the
gluon reads,

Dµν(p) =
G `(p2)

p2

(
gµν −

pµ pν

p2

)
(1.1)

and similarly for the ghost,

D(p) =−G h(p2)

p2 (1.2)

where Dµν(p) is the full gluon propagator in Landau gauge and D(p) is the ghost propagator. The
dressing functions G ` and G h contain all of the non-perturbative physics of these two Green’s
functions. The simple transverse dressing of the gluon in Eq. (1.1) is due to the Slavnov-Taylor
identity for the propagator and is an important feature of the gauge invariance of the theory.

First we present the solutions of the ghost equation that are obtainable using a fixed gluon
input. These solutions then provide a natural starting point for investigating the coupled system
where simultaneous solutions of both propagator dressings are found. During the course of this
work it became apparent that many simple vertices do not admit self-consistent solutions. We test a
range of vertices with a range of solutions. A preferred system motivated by theoretical arguments
is then selected. We conclude by comparing to the extant lattice data.

2. The Ghost Equation

Using a fixed gluon input we may solve the Ghost SDE alone and investigate its sensitivity to
a range of input vertices. This is useful because this type of SDE is very simple to solve, and it
teaches us what to expect when solving the more complicated, coupled equations self-consistently.
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In particular, the choice of ghost-gluon vertex applied here does have an effect, and understanding
this is useful when solving the coupled system of gluons and ghosts.

In order to study the ghost equation in isolation we are required to provide a gluon input, we
use the following model [14],

G `(p2) =
p2

m2 + p2
(

1+ 11
12π

Ncg2

4π
Log

(
p2+m2

µ2

)) 13
22
. (2.1)

In this form the gluon contains a mass term m, which is typically O(ΛQCD) in lattice and other SDE
studies. The remaining terms arise in order to reproduce the one-loop behaviour. This is similar
to many contemporary representations of the gluon dressing function, and a closely related form
has recently been applied to a phenomenological study of hadron physics observables [15, 16].
This form reproduces the leading resummed logarithm one finds from perturbation theory at large
momenta.

↑ k

← p← q

µ

Figure 1: The ghost-gluon vertex indicating the momentum definition we adopt, the outgoing ghost mo-
mentum is q and the gluon momentum is k.

The next step is to specify the ghost-gluon vertex which in principle is all that is required in
order to solve the ghost equation given a fixed gluon input. The full ghost-gluon vertex has the
form,

Γµ = ig f abc (
α(k, p,q)qµ +β (k, p,q)kµ

)
(2.2)

where α(k, p,q) and β (k, p,q) are the non-perturbative dressing functions and the momenta are
defined in Fig. 1. Initially we make use of the bare vertex in place of the fully dressed one, where
α = 1 and β = 0. This is motivated by Taylor’s theorem [17] which constrains the sum of the
functions to unity at vanishing incoming ghost momentum: p = 0. When solving for the gluon, the
following extended vertices will be used,

Γ
(1)
µ = ig f abc

(
qµ − kµ

k.q
k2 FIR(k, p,q)

)
, (2.3)

Γ
(2)
µ = ig f abc

(
qµ − pµ

k.q
k2 NIRFIR(k, p,q)

)
, (2.4)

where FIR = 1 for small momenta and FIR = 0 for large momenta. NIR is a non-perturbative
normalisation parameter.

The ghost-gluon vertex in Eq. (2.3) is defined to be transverse in the small-k limit, and has
been used to solve these equations previously [8]. In the ghost equation, only the qµ term survives
and hence this gives identical results to the bare vertex when solving for the ghost alone. This is not
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the case for Γ
(2)
µ , which is a minor modification that has been chosen in order to satisfy the Taylor

condition. The additional term now vanishes when p→ 0, but contributes in both equations.
The final requirement is then to specify the renormalisation procedure. In the numerical

method adopted here, it is most straightforward to use the momentum subtraction scheme, where
the equations are subtracted from themselves at an arbitrary value of the propagator momentum.
There are two choices that influence which solutions may be obtained. A subtraction at p2 = 0 may
produce a singular ghost dressing function. However a subtraction at some perturbative momentum
can be applied and in some ways is better since the dressings are already well known in that region.
The Schwinger-Dyson equations tell us how these evolve from the known results at large momenta
into the non-perturbative region. The alternative is to make an assumption about the ghost dressing
at zero momentum.

The renormalised ghost equation with a cutoff regularisation reads,

G h−1(p2) = Z̃3(µ
2,Λ2)+Πgc(p2,µ2) (2.5)

= G h(µ2)+Πgc(p2,µ2)+Πgc(µ
2,µ2) (2.6)

in the second line we eliminate the renormalisation constant Z̃3(µ
2,Λ2). The function Πgc(p2,µ2)

is the ghost self-energy diagram, the details of which are given in [13]. This is the equation that is
solved numerically. To check the dependence and range of solutions available, we vary the value of
1/G h(0). The solutions are given in Fig. 2. We observe two classes of solutions. With G h(0)& 2
then the Ghost dressings in the perturbative region are practically indistinguishable. In the small p2

region any value in the range ∞ > G h(0) > 2 produces the same perturbative solution. Reducing
G h(0) there is then some critical value where the solutions in the perturbative region also begin to
fall. The precise value of G h(0) for which this occurs is dependent upon the couplings, the vertex
and the gluon. All of the solutions are monotonic and decrease with increasing p2. By specifying
the value at p2 = 0 then all other points are implicitly given by the equation.

10-6 10-4 0.01 1 100
0.001

0.01

0.1

1

10

100

1000

p2

Figure 2: Examples of ghost solutions on a log-log plot subtracting at zero momentum. The solid curves
display different ghost dressings G h(p2), while the dashed curve is the gluon dressing G `(p2). Only the
specified subtraction value G h(0) is varied between the solutions which can be read from the plot. The
G h(p2 = 0) value is fixed and the ghost equation solved with the depicted gluon until the ghost inputs and
outputs are self-consistent. The units of p2 are arbitrary since we have not fixed the coupling to the physical
value, but may be considered to be O (1 GeV2).

4



P
o
S
(
Q
C
D
-
T
N
T
-
I
I
)
0
5
2

Vertex Sensitivity in the SDEs of QCD D.J. Wilson

We may then switch to the other viewpoint of subtracting in the perturbative region and choose
the typical perturbative condition G h(µ2) = 1. In doing this, none of the solutions subtracted at
zero in Fig. 2 are obtained. The ghost dressing rises from unity at p2 = µ2 to a finite value at
zero momentum. It is possible to subtract at zero and fine tune to this value and obtain the same
solution, although this is a special case.

Specifying G h(µ2) = 1 as one would do perturbatively leads to the interesting consequence
that only one of these many Ghost dressings is obtained. This is distinct from singular solution and
importantly no renormalisation group running connects this solution to the singular one. Since the
expectation is that asymptotically free QCD at large momentum transfers is accurately described
by the perturbative solution, this is the solution we favour. This effect is depicted in Fig. 3, where
the solid curve is the unique solution found by imposing G h(µ2) = 1 whilst the remaining curves
are those subtracted at zero from Fig. 2.

Hence we carry forward this arrangement when solving the gluon equation. It is worth noting
that this same effect has been tested for gluons that vanish more or less quickly and the same
qualitative features arise. Similar effects have been observed in other studies [18, 19, 20, 21].

10-6 10-4 0.01 1 100 104
0.0

0.5

1.0

1.5

2.0

2.5

3.0

p2

Figure 3: The dotted curves correspond to the zero momentum subtracted solutions and the colours match
Fig. 5. The dashed curve is the gluon input, G `(p2), and the solid curve is the physically relevant solution
of the ghost equation, G h(p2). The units of p2 are arbitrary.

Finally we compare the result using Γ
(1)
µ , which is identical to the bare vertex in the ghost

equation, to the solution found using Γ
(2)
µ . This comparison is shown in Fig. 4 where a large

difference is apparent between the two results in the non-perturbative region.

3. The coupled Gluon and Ghost system

The coupled system is naturally more complicated, although we already have most of the
ingredients that are needed. We choose to work using only the one-loop graphs since the two-loop
graphs are a considerable complication numerically. It is possible that these terms are important
and in order to obtain numerically precise results it is likely that they are essential. The gluon
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0.0
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Figure 4: A comparison of two solutions normalised using the perturbative condition. The (red) dotted
curve is the ghost solution, Gh(p2), with a bare vertex or transverse vertex. The (blue) dashed curve is the
ghost dressing obtained using Γ

(2)
µ . The (black) solid curve is the fixed gluon dressing input G `(p2) from

the model. The units of p2 are arbitrary internal units.

equation has the form

G `−1(p2) = Z3(µ
2,Λ2)+Π2c(p2,µ2)+Π2g(p2,µ2) (3.1)

= G `−1(µ2)+Π2c(p2,µ2)−Π2c(µ
2,µ2)+Π2g(p2,µ2)−Π2g(µ

2,µ2) (3.2)

where in the second line we have subtracted to remove the renormalisation constant, Π2g is the
gluon loop contribution to the vacuum polarisation, and Π2c arises due to the ghost loop. The
ghost-gluon vertices we have already specified are sufficient for Π2c. The final requirement is to
specify the triple-gluon vertex. To illustrate the uncertainty we select three different vertices and
check the sensitivity in the solutions.

The first we apply is a simple form that reproduces the resummed leading logarithmic running
found at one-loop order in perturbation theory [4],

Γ
(A)
µνρ(k, p,q) =

G h(p2)G h(q2)

G `(p2)G `(q2)
Γ
(0)
µνρ(k, p,q) (3.3)

this is proportional to the bare Lorentz structure Γ
(0)
µνρ(k, p,q) and p and q are chosen to be the

internally contracted legs under the loop integration. What one immediately notices about this
form is that it is not symmetric under interchange of legs. Since this vertex is expected to be
symmetric to all orders and since the Ward-Slavnov-Taylor Identity (WSTI) is also symmetric
under the interchange of legs, a symmetric form is desirable. Hence we also apply,

Γ
(B)
µνρ(k, p,q) = Γ

(0)
µνρ(k, p,q)

1
3

(
G h(k2)

G `(k2)
+

G h(p2)

G `(p2)
+

G h(q2)

G `(q2)

)
(3.4)

where the ghost-over-gluon form is suggested by the WSTI, and for simplicity this is chosen to be
proportional to the bare Lorentz structure. The final dressing of the triple-gluon vertex we apply is
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a solution of the WSTI using a bare ghost-gluon scattering kernel,

Γ
(C)
µνρ(k, p,q) =

1
2

(
G h(q2)

G `(p2)
+

G h(q2)

G `(k2)

)
gµν(k− p)ρ

+
1
2

(
G h(k2)

G `(q2)
+

G h(k2)

G `(p2)

)
gνρ(p−q)µ

+
1
2

(
G h(p2)

G `(k2)
+

G h(p2)

G `(q2)

)
gρµ(q− k)ν , (3.5)

now each term of the bare structure receives its own non-perturbative dressing and these have a
symmetric structure. More elaborate forms are also possible and eventually something more will
be required in order to obtain a triple-gluon vertex that has a consistent ghost-gluon scattering
kernel with the ghost-gluon vertex as prescribed by the WSTI.

(2,B)
(2,C)
(2,A)

(1,C)
(1,A)

(2,A)
(2,C)
(2,B)
(1,A)
(1,C)

Gluon Dressings

Ghost Dressings

0.1 10 1000
0.0

0.5

1.0

1.5

2.0

2.5

p2

Figure 5: The range of solutions obtained using the possible vertex combinations. The label (i, j) refers to
the vertices used in obtaining the solutions corresponding to Γ

(i)
µ for the ghost-gluon vertex and Γ

( j)
µνρ for the

triple-gluon vertex. The missing curve corresponds to the Γ
(1)
µ and Γ

(B)
µνρ , self-consistent solutions were not

obtained there. The parameters are not varied between the solutions, only the vertices. The units of p2 are
arbitrary since we have not fixed the coupling to a physical value.

The next step is to implement these vertices numerically in the ghost and gluon SDEs and
to solve them self-consistently. This is done numerically in the momentum subtraction scheme,
subtracting both equations at the renormalisation point µ . The equations are solved iteratively
and are fairly insensitive to the initial function. The model gluon in Eq. (2.1) may be used and
G h(p2) = 1 is adequate for the ghost. Convergence is achieved rapidly using a Newton-Raphson
method, although a natural iterative procedure is sufficient.

In Fig. 5 we see a broad range of gluon dressings given the different vertex inputs. The
position of the peak of the gluon propagator moves around considerably. This is important because
it is related to the effective gluon mass and physical quantities depend on this, as has been shown
in [15, 16]. This plot tells us that just using any old vertex is insufficient and one should appeal to
all possible constraints when choosing this input.

These differences in the propagator dressings arise from differences in the vacuum polarisation
integrals, which come directly from the vertices. It is informative to look inside the contributions
for the gluon from each loop to disentangle the range of vertex contributions. The simplest triple-
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gluon vertex Γ
(A)
µνρ is actually quite close to the completely bare triple-gluon vertex in the small p2

region, whilst the dressed symmetric triple-gluon vertices give quite different results.

(2,B)
(2,C) (1,C)

(1,A)

(2,A)

Gm
H1L Gm

H2L

p2 P2 g

p2 P2 c

0.001 0.01 0.1 1
p2

-0.4

-0.2

0.0

0.2

0.4
 p2 P2 c

p2 P2 g

10 100 1000
p2

-150

-100

-50

0

50

Figure 6: Gluon polarization functions, p2Π2c(p2) (positive values) and p2Π2g(p2) (negative values). Left:
IR region, Right: UV region. In the UV the curves are indistinguishable on this scale. In the IR, the
ghost-loop curves for multiple solutions lie on top of each other. The bare ghost-gluon vertex, not shown
here, always gives a vanishing IR contribution given an IR vanishing gluon dressing and an IR finite ghost
dressing. The functions p2Π2g(p2,µ2) are labelled according to the input vertices with the contributions
from Γ

(i)
µ and Γ

( j)
µνρ labelled as (i, j) in the plot. The units of p2 are arbitrary.

In order to see this we take the subtracted contribution from each loop integration and since they
typically behave as 1/p2 for small p2, we multiply them by p2 in order to get a better view of the
differences. This we show in Fig. 6, where the quantities plotted are p2

(
Πi(p2,µ2)−Πi(µ

2,µ2)
)
,

from Eq. 3.2. In the right panel we see the large p2 region, which is essentially determined by
perturbation theory, where all contributions are the same. Differences arise in the left panel of
Fig. 6 where we zoom in on the small p2 region.

The negative curves are the contributions from the triple-gluon vertices. The plotted functions
p2Π2g(p2,µ2) are labelled according to the input vertices with the contributions from Γ

(i)
µ and Γ

( j)
µνρ

labelled as (i, j) in the plot. It is evident that Γ
(A)
µνρ leads to a vanishing contribution when plotted

in this way whilst the sensibly dressed symmetric vertices do not, they are finite and negative. The
gluon dressing function is not expected to change sign and is positive in the perturbative region,
so it is necessary that a positive contribution also arises to cancel that from the gluon loop. In the
one-loop-only system with these triple-gluon vertices, a positive contribution must arise from the
ghost-loop terms. This is indeed the case since we have self-consistent solutions for the curves that
are plotted. The combination (1,B) is missing since for this set of parameters it did not satisfy the
condition. It is then not possible to find self-consistent solutions. The same condition is also why
we need non-trivial ghost-gluon vertices, since the bare vertex gives a vanishing contribution when
plotted in this way. This leads directly to a change of sign in the gluon dressing and no stable set
of solutions can be found.

The fact that a symmetric triple-gluon dressing results in a negative contribution is very im-
portant, since it leads to the condition that the ghost loop, and hence the ghost-gluon vertex, need
not be transverse alone and can work together with the other loops, as they do in the perturbative
region, in order to produce a transverse gluon dressing.
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4. Comparison with Lattice QCD

Primarily we have been motivated by theoretical issues encountered in solving the Schwinger-
Dyson equations for the gluon and ghost propagators. However lattice studies exist for these quan-
tities and the results are complementary. The possible issues that result from a applying a finite
grid to Euclidean spacetime are quite different to those that we may induce here by truncation, so
a comparison is a useful independent cross-check. Importantly there are lattice computations that
are precise and in the pure gauge sector.

An early lattice result favoured a finite, massive solution of the gluon [22]. Following this
many recent lattice studies now exist using very large lattices [6, 11, 12, 23]. We compare our
calculations to [9], which provides results in Landau gauge for both dressing functions. The quali-
tative behaviour is the same, with a finite ghost dressing function and a vanishing gluon propagator
dressing function.

10-5 0.001 0.1 10 1000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

p2

10-5 0.001 0.1 10 1000
0

2

4

6

8

10

12

p2

Figure 7: Self-consistent solutions tuned to lattice solutions, showing the dressing functions. The solid
curves depict a smooth fit to the lattice data. The heavier region is where the functions are represented
by lattice data and the feint region represents the natural extrapolation. The broken curves are the tuned
solutions. Left: The blue curve corresponds to the gluon dressing function G `(p2), this vanishes as p2→ 0,
the red curve corresponds to the ghost dressing function G h(p2). Right: The blue curve corresponds to
G `(p2)/p2, this is ∼ 10 as p2→ 0, the red curve corresponds to the ghost dressing function again.

In Fig. 7 we show the solutions of the equations obtained self-consistently with three different
sets of parameters that reproduce different features of the lattice data. In obtaining these solu-
tions we use the preferred set of vertices, Γ

(C)
µνρ from Eq. (3.5) and the ghost-gluon vertex given in

Eq. (2.4). We then tune the parameters to obtain a reasonable representation of the lattice data. We
are not able to find a close fit over the whole momentum region. All three sets of parameters fail
to reproduce the magnitude of the peak of the gluon propagator dressing function shown in the left
panel of Fig. 7. It is possible that this is due to the effects of the two-loop graphs. However to be
sure one would need to perform the full dressed two-loop integrals.

Another difference is the value of the coupling in the perturbative region. In all three sets of
solutions, the lattice appears to have a larger value of the coupling. This leads to a slower increase
in the SDE solutions between the peak of the gluon propagator and the subtraction point. A similar
effect is seen in the ghost dressings in this region. In the non-perturbative region it is possible to

9
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find similar values of the dressings simultaneously: The dashed solution is the closest we show and
the effect is most visible in the right panel of Fig. 7.

5. Conclusion

We solved the Schwinger-Dyson Equations of QCD in the Landau gauge in the absence of
quarks. In solving the ghost equation we found the singular ghost is excluded when a subtraction
point in the perturbative region is selected. This was true for all vertices that we tested and for a
range of gluon inputs although only one was shown. This agrees with earlier findings [18].

ΑECIp2M

ΑTIp2M

GlIp2M

GhIp2M

0.01 1 100
0.0

0.5

1.0

1.5

2.0

p2

Figure 8: The running coupling αT (p2) is shown as the black solid curve. The running coupling αEC(p2)

is shown as the green solid curve. The gluon dressing G `(p2) is the dashed blue curve and the dotted red
curve is the ghost dressing function G h(p2). The units of p2 are now very close to GeV2.

When solving the gluon equation we found that non-trivial vertex dressings were essential in
that simple vertices did not lead to self-consistent solutions. It was found that symmetric triple-
gluon vertex dressings lead generically to a non-zero contribution of the gluon-loop diagram in the
non-perturbative region. The main implication of this is that the ghost-loop term is not required to
be transverse alone and that both terms can contribute to the transversality of the gluon propagator,
as they do in the perturbative region. This combined with Taylor’s theorem led us to test a simple
modification of Γ

(1)
µ , a vertex already known to give self-consistent solutions with Γ

(2)
µ in Eq. (2.4).

This modification protects Taylor’s theorem whilst sacrificing the transversality of that individual
loop. It is interesting to note that another ghost-gluon vertex dressing presented at this workshop
leads to similar effects in the ghost equation [24].

A range of solutions were found by selecting a conservative set of parameters and testing the
effects of using the different vertices. A wide variation was found in the physical region leading us
to the suggestion that more advanced vertices are required in order to obtain numerically precise
results. Proposals for new vertices in a related method specifically investigating the mass generation
mechanism have been suggested [25, 26].

We may use the method we present here to produce a running coupling by considering the
ghost-gluon vertex renormalisation. There are two definitions we apply, first using the standard
Taylor definition which we denote αT and a second form, αEC related to the Taylor form, but
removes the mass term from the gluon dressing [27]. These curves and a set of solutions fixed
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using physically meaningful parameters are given in Fig. 8. The effective gluon mass we found
from this gluon propagator was mg = 400 MeV.

These equations produced self-consistent solutions of the ghost and gluon propagator dress-
ings that were in qualitative agreement with lattice QCD results. Quantitative differences from this
method could arise in either the vertex dressings or two-loop graphs. Regardless of precision, qual-
itatively all results are the same and they point to a finite gluon propagator in the non-perturbative
region, corresponding to a dynamically generated gluon mass as proposed by Cornwall [28].
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