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We apply Bogoliubov compensation principle to the gauge electro-weak interaction. The non-

trivial solutions of compensation equations lead to determination of parameters of the theory in-

cluding value of gauge electro-weak couplingg(M2
W)' 0.62and thet-quark massmt = 177GeV

in satisfactory agreement with the experimental values. The results strongly support idea oft̄ t

condensate as a source of the electro-weak symmetry breaking. The approach also gives predic-

tions for experiments at LHC and TEVATRON. In particular, very large mass of the composite

Higgs boson is obtained, which means prediction of a negative result of Higgs boson searches at

LHC. The indications (CDF) for state with mass' 145GeV are interpreted as a manifestation of

I = 1,J = 1 bound state of twoW. Corresponding cross-sections and decay widths are estimated.
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Non-perturbative effects in the electro-weak theory versus TEVATRON and LHC dataBoris Arbuzov

1. Compensation equation for anomalous tree-boson interaction

In works [1, 2, 3, 4, 5, 6] N.N. Bogoliubov compensation principle was applied to studies of
spontaneous generation of effective non-local interactions in renormalizable gauge theories.

N.N. Bogoliubov compensation principle [7, 8, 9] was very succesfully applied to non-perturbative
problems in ststistical physics (superfluidity, supercoductivityetc. The first application of Bogoli-
ubov compensation principle to problems of the quantum field theory see [10].

At the present time quite important problem of QFT consists in studying of a spontaneous gen-
eration of effective theories. The compensation approach allows to check if an effective interaction
could be generated in a chosen variant of a renormalizable theory. In view of this one performs
"add and subtract" procedure for the effective interaction with a form-factor. Then one assumes
the presence of the effective interaction in the interaction Lagrangian and the same term with the
opposite sign is assigned to the newly defined free Lagrangian.

We start with EW Lagrangian with3 lepton and quarks with gauge groupSU(2).

L =
3

∑
k=1

(
ı
2

(
ψ̄kγµ∂µψk −∂µ ψ̄kγµψk

)
+

g
2

ψ̄kLγµτaWa
µ ψkL

)
+ (1.1)

+
3

∑
k=1

(
ı
2

(
q̄kγµ∂µqk −∂µ q̄kγµqk

)
+

g
2

q̄kLγµτaWa
µ qkL

)
−

−1
4

(
Wa

µνWa
µν

)
; Wa

µν = ∂µWa
ν −∂νWa

µ +gεabcW
b
µWc

ν .

where we use the standard notations.
In accordance to the Bogoliubov approach in application to QFT we look for a non-trivial

solution of a compensation equation, which is formulated on the basis of the Bogoliubov procedure
add – subtract.

L = L0 + Lint ;

L0 ==
3

∑
k=1

(
ı
2

(
ψ̄kγµ∂µψk −∂µ ψ̄kγµψk

)
− mkψ̄kψk +

ı
2

(
q̄kγµ∂µqk −∂µ q̄kγµqk

)
−

−Mkq̄kqk

)
− 1

4
Wa

µνWa
µν +

G
3!
· εabcW

a
µν Wb

νρ Wc
ρµ ; (1.2)

Lint =
g
2

3

∑
k=1

(
ψ̄kγµτaWa

µ ψk + q̄kγµτaWa
µ qk

)
− G

3!
· εabcW

a
µν Wb

νρ Wc
ρµ . (1.3)

Here isotopic summation is performed inside of each quark bi-linear combination, and notation
− G

3! · εabcWa
µν Wb

νρ Wc
ρµ means corresponding non-local vertex in the momentum space

(2π)4G εabc(gµν(qρ pk− pρqk)+gνρ(kµ pq−qµ pk)+gρµ(pνqk−kν pq)+

+qµkν pρ −kµ pνqρ)F(p,q,k)δ (p+q+k) + ...; (1.4)

whereF(p,q,k) is a form-factor andp,µ,a; q,ν ,b; k,ρ ,c are respectfully incoming momenta,
Lorentz indices and weak isotopic indices ofW-bosons. We mean also that there are present four-
boson, ...
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Effective interaction (4.1) is usually called anomalous three-boson interaction and it is con-
sidered for long time on phenomenological grounds [11]. Note, that the first attempt to obtain
the anomalous three-boson interaction in the framework of Bogoliubov approach was done in
work [12]. Our interaction constantG is connected with conventional definitions in the follow-
ing way

G = − gλ
M2

W

. (1.5)

The current limitations for parameterλ read [13]

λ = −0.016+0.021
−0.023; −0.059< λ < 0.026(95%C.L.) . (1.6)

Due to our approximationsin2 θW ¿ 1 we use the sameMW for both chargedW± and neutralW0

bosons and assume no difference in anomalous interaction forZ andγ, i.e. λZ = λγ = λ .
Let us consider expression (1.2) as the newfree LagrangianL0, whereas expression (1.3)

as the newinteraction LagrangianLint . It is important to note, that we put into the newfree
Lagrangian the full quadratic inW term including boson self-interaction, because we prefer to
maintain gauge invariance of the approximation being used. Indeed, we shall use both quartic term
from the last term in (1.2) and triple one from the last but one term of (1.2). Then compensation
conditions (see for details [1]) will consist in demand of full connected three-gluon vertices of the
structure (1.4), following from LagrangianL0, to be zero. This demand gives a non-linear equation
for form-factorF .
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Figure 1: Diagram representation of the compensation equation. Black spot corresponds to anomalous
three-gluon vertex with a form-factor. Empty circles correspond to point-like anomalous three-gluon and
four-gluon vertices. Simple point corresponds to usual gauge vertex. Incoming momenta are denoted by the
corresponding external lines.

Now in view of obtaining the first approximation we would make the following assumptions.
1) In compensation equation we restrict ourselves by terms with loop numbers 0, 1.
2) We reduce thus obtained non-linear compensation equation to a linear integral equation. It
means that in loop terms only one vertex contains the form-factor, being defined above, while other
vertices are considered to be point-like. In diagram form equation for form-factorF is presented
in 1. Here four-leg vertex correspond to interaction of four bosons due to our effective three-
field interaction. In our approximation we take here point-like vertex with interaction constant
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proportional togG.
3) We integrate by angular variables of the 4-dimensional Euclidean space.

We look for a solution with the following simple dependence on all three variables

F(p1, p2, p3) = F(
p2

1 + p2
2 + p2

3

2
) ; (1.7)

Thus we have

F(x) = − G2N
64π2

(∫ Y

0
F(y)ydy− 1

12x2

∫ x

0
F(y)y3dy+

1
6x

∫ x

0
F(y)y2dy+

+
x
6

∫ Y

x
F(y)dy− x2

12

∫ Y

x

F(y)
y

dy

)
+

GgN
16π2

∫ Y

0
F(y)dy+ (1.8)

+
GgN
24π2

(∫ x

3x/4

(3x−4y)2(2y−3x)
x2(x−2y)

F(y)dy+
∫ Y

x

(5x−6y)
(x−2y)

F(y)dy

)
+

+
GgN
32π2

(∫ x

3x/4

3(4y−3x)2(x2−4xy+2y2)
8x2(2y−x)2 F(y)dy+

∫ Y

x

3(x2−2y2)
8(2y−x)2 F(y)dy+

+
∫ x

0

5y2−12xy
16x2 F(y)dy+

∫ Y

x

3x2−4xy−6y2

16y2 F(y)dy

)
.

Herex= p2 andy= q2, whereq is an integration momentum,N = 2. The last four terms in brackets
represent diagrams with one usual gauge vertex (see three last diagrams at1). We introduce here
an effective cut-offY, which bounds a "low-momentum" region where our non-perturbative effects
act and consider the equation at interval[0, Y] under condition

F(Y) = 0. (1.9)

We shall solve equation (1.8) by iterations. The second iterations gives the following equation

F(z) = 1+
85g

√
N
√

z
96π

(
ln z+4γ +4 ln 2+

1
2

G31
15

(
z0 |00,0,1/2,−1,−1/2

)
−

− 595
336

)
+

2
3z

∫ z

0
F(t) t dt− 4

3
√

z

∫ z

0
F(t)

√
t dt− 4

√
z

3

∫ z0

z
F(t)

dt√
t

+

+
2z
3

∫ z0

z
F(t)

dt
t

; (1.10)

whereγ is the Euler constant. We look for solution of (1.10) in the form

F(z) =
1
2

G31
15

(
z|01,1/2,0,−1/2,−1

)
− 85g

√
N

512π
G31

15

(
z|1/2

1,1/2,1/2,−1/2,−1

)
+

+C1G10
04

(
z|1/2, 1,−1/2,−1

)
+ C2G10

04

(
z|1, 1/2,−1/2,−1

)
. (1.11)

where
Gnm

qp

(
z|a1,...,aq

b1,...,bp

)
;
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is a Meijer function. In caseq= 0 we write only indicesbi in one line. ConstantsC1, C2 are defined
by boundary conditions. We have also conditions

1 + 8
∫ z0

0
F(z)dz =

87g
√

N
32π

∫ z0

0
F0(z)

dz√
z

; (1.12)

F(z0) = 0. (1.13)

Knowing form (1.11) of a solution we calculate both sides of the equation in two different
points in interval0 < z < z0 and having four equations for four parameters solve the set. With
N = 2 this gives

g(z0) = 0.60366; z0 = 9.61750; C1 = −0.035096; C2 = −0.051104. (1.14)

We consider the neglected terms of the equation as perturbations to be taken into account in forth-
coming studies.

We have one-loop expression forαs(p2)

αew(x) =
6π αew(x0)

6π + 5αew(x0) ln(x/x0)
; x = p2 ; (1.15)

We normalize the running coupling by condition

αew(x0) =
g(Y)2

4π
= 0.0290; (1.16)

Note that value (1.16) is not far from physical valueαew(MW) = 0.0337. To compare these values
properly one needs a relation connectingG andMW. For example with|gλ | = 0.025, αew(MW) =
0.0312. The experimental value0.0337is reached for|gλ | = 0.000003. For both cases values of
λ are consistent with limitations (1.6). Bearing in mind that accuracy of the present approximation
is estimted to be' 10%we can state that agreement is valid for all possible values ofλ . In what
follows we shall use experimental valueαew(MW) = 0.0337.

2. Four-fermion interaction of heavy quarks

Let us remind that the adequate description of low-momenta region in QCD can be achieved by
an introduction of the effective Nambu – Jona-Lasinio interaction [15, 16] (see recent review [17]).
In the framework of the compensation approach the spontaneouis generation of NJL-type interac-
tion was demonstrated in works [2, 3]. In these works pions are described as bound states of light
quarks, which are formed due to the effective NJL interaction with account of QCD corrections.

In the present work we explore the analogous considerations and assume that scalar fields
which substitute elementary Higgs fields are formed by bound states of heavy quarkst, b. This pos-
sibility was proposed (1989 – 1990) in works by Y.Nambu, V.Miransky, M.Tanabashi, K.Yamawaki,
W.Bardeen, C.Hill, M.Lindner [18, 19, 20] and was considered in a number of publications (see,
e.g. review by M.Lindner [21]). It comes clear, that estimates of mass of thet-quark in this model
gives result which exceeds significantly its measured value. In the present work we obtain the four-
fermion interaction in the framework of Bogoliubov compensation approach, while in the previous

5
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works on the model the interaction was postulated. In our approach parameters of the problem are
obtained as an unique solution of a set of equations quite analogously [2, 3]. In particular we shall
see that thet-quark mass is quite consistent with the current data.

We have started with Lagrangian (1.1) in which both gauge bosonsW and spinor particles
(leptons and quarks) are massless. As the first stage we consider approximation in which only
the most heavy particles aquire masses, namelyW-s and thet-quark while all other ones remain
massless. In view of this we introduce left doubletΨL = (1+ γ5)/2 · (t, b) and right singletTR =
(1− γ5)/2 · t. Then we study a possibility of spontaneous generation [1, 2, 3, 5] of the following
effective non-local four-fermion interaction

L f f = G1 Ψ̄α
L TRα T̄β

R ΨLβ + G2 Ψ̄α
L TRβ T̄β

R ΨLα +
G3

2
Ψ̄α

L γµ ΨL α Ψ̄β
L γµ ΨLβ +

G4

2
T̄α

R γµ TRα T̄β
R γµ TRβ . (2.1)

whereα, β are colour indices. We shall formulate and solve compensation equations for form-
factors of the first two interaction, while consideration of the two last ones is postponed for the
next approximations. Here we follow the procedure used in works, which deal with four-fermion
Nambu–Jona-Lasinio interaction. However coupling constantsG3, G4 essentially influence the
forthcoming results. In this sectionN = 3 and a kernel term in equations is the following

K×F = (Λ2−xlnΛ2)
∫ Ȳ

0
F(y)dy− lnΛ2

∫ Ȳ

0
F(y)ydy+

1
6x

∫ x

0
F(y)y2dy+ lnx

∫ x

0
F(y)ydy+x(lnx− 3

2
)
∫ x

0
F(y)dy+

∫ Ȳ

x
y(lny− 3

2
)F(y)dy+x

∫ Ȳ

x
lnyF(y)dy+

x2

6

∫ Ȳ

x

F(y)
y

dy. (2.2)

Λ is auxiliary cut-off, which disappears from all expressions with all conditions for solutions be
fulfilled. The compensation equation corresponds to set of diagrams at2

Φ(x) =
Λ2(N2G2

1 +2NG1G2 +G2
2)

8π2(NG1 +G2)

(
1− NG1 +G2

8π2

∫ Ȳ

0
Φ(y)dy

)
+

(
Λ2 +

x
2

ln
x

Λ2 −
3x
4

)
G2

1 +G2
2 +2NG1G2 +2Ḡ(N+1)(G1 +G2)

32π2(NG1 +G2)
−

G2
1 +G2

2 +2NG1G2 +2Ḡ(N+1)(G1 +G2)
29π4 K×Φ ; (2.3)

F2(x) =
Λ2G2

8π2

(
1− G2

8π2

∫ Ȳ

0
F2(y)dy

)
+

(
Λ2 +

x
2

ln
x

Λ2 −
3x
4

)
G2

1 +G2
2 +2Ḡ(G1 +G2(N+1))

32π2G2
−

G2
1 +G2

2 +2Ḡ(G1 +G2(N+1)
29π4 K×F2 ; Φ(Ȳ) = F2(Ȳ) = 0; (2.4)

Φ(x) =
NG1F1 +G2F2

NG1 +G2
; Ḡ =

G3 +G4

2
; x = p2 ; y = q2 .

6
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Figure 2: Diagram representation of the compensation equation for the four-fermion interaction. Lines
describe quarks. Simple point corresponds to the point-like vertex and black circle corresponds to a vertex
with a form-factor.

Introducing substitutionG1 = ρ Ḡ, G2 = ωḠ and comparing the two equations (2.3, 2.4) we
get convinced, that both equations become being the same under the following condition

ρ = 0. (2.5)

and we are rested with one equation

F2(z) =

√
ω2 +8ω

ω
√

z(lnz−3)−16

[
1

6
√

z

∫ z

0
F2(t)

√
tdt+

lnz
2

∫ z

0
F2(t)dt+

√
z(lnz−3)

2

∫ z

0

F2(t)√
t

dt+ (2.6)

1
2

∫ z̄0

z
(ln t−3)F2(t)dt+

√
z

2

∫ z̄0

z
ln t

F2(t)√
t

dt+
z
6

∫ z̄0

z

F2(t)
t

dt

]
;

z=
(ω2 +8ω)Ḡ2x2

214π4 ; t =
(ω2 +8ω)Ḡ2y2

214π4 ; z̄0 =
(ω2 +8ω)Ḡ2Ȳ2

214π4 .

Here we omit all terms containing auxiliary cut-offΛ due to their cancellation.
Performing consecutive differentiations of Eq.(2.6) we obtain the following differential equa-

tion for F2
(

z
d
dz

+
1
2

)(
z

d
dz

)(
z

d
dz

)(
z

d
dz
− 1

2

)(
z

d
dz
− 1

2

)
×

(
z

d
dz
−1

)
F2(z) + zF2(z) = 0; (2.7)

The equation is equivalent to integral equation (2.6) provided the following boundary condi-
tions being fulfilled

∫ z̄0

0

F2(t)√
t

dt =

√
ω2 +8ω

8ω
; F2(z̄0) = 0;

∫ z̄0

0
F2(t)

√
t dt = 0;

∫ z̄0

0
F2(t)dt = 0. (2.8)

Note that just boundary conditions (2.8) lead to cancellation of all terms containingΛ. Differential
equation is a Meijer equation and the solution of the problem is the following

F2(z) =
1

2
√

π
G40

06

(
z|0,

1
2
,
1
2
,1,−1

2
,0

)
; z0 = ∞. (2.9)
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Figure 3: Diagram representation of the Bethe-Salpeter equation for a bound state of heavy quarks. Double
line represent the bound state and dotted line describes a gluon. Black circle corresponds to BS wave
function. Other notations are the same as at Fig. 2.

Here we also take into account conditionF2(0) = 1 that givesω = 8
3.

We would draw attention to the fact, that unique solution (2.9) exists only for infinite upper
limit in integrals.

3. Doublet bound stateΨ̄L TR

Let us study a possibility of spin-zero doublet bound stateΨ̄L TR = φ , which can be referred
to a Higgs scalar. With account of interaction (2.1) using results of the previous section we have
the following Bethe–Salpeter equation, in which we take into account thet-quark mass (see3)

Ψ(x) =
Ḡ

16π2

∫
Ψ(y)dy+

G2
2

27π4 K∗×Ψ ; (3.1)

where the modified integral operatorK∗ is defined in the same way as operator (2.2) with Ȳ = ∞
and lower limit of integration0 being changed for thet-quark massm2

t . Then we have again
differential equation

(
z

d
dz
−a1

)(
z

d
dz
−a2

)(
z

d
dz

)(
z

d
dz
− 1

2

)(
z

d
dz
− 1

2

)(
z

d
dz
−1

)
Ψ(z)−zΨ(z) = 0;

a1 =− 1+
√

1+64µ
4

; a2 =− 1−√1+64µ
4

; µ =
G2

2m4

212π4 ;

where the main difference is the other sign of the last term, while variablez is just the same as
in (2.6) with account of relationω = 8

3. Boundary conditions now are the following

∫ ∞

µ

Ψ(t)√
t

dt = 0;
∫ ∞

µ
Ψ(t)

√
t dt = 0;

∫ ∞

µ
Ψ(t)dt = 0; Ψ(µ) = 1. (3.2)

Solution of the problem is presented in the following form

Ψ(z) = C1G50
06(z|a1,a2,1/2,1/2,1,0)+C2G30

06(z|0,1/2,1,a1,a2,1/2)+

C3G30
06(z|1/2,1/2,1,a1,a2,0)+C4G50

06(z|a1,a2,0,1/2,1,1/2) ; (3.3)

whereCi for given µ are uniquely defined by boundary conditions. We define interaction of the
doubletφ with heavy quarks

Lφ = gφ (φ ∗Ψ̄L TR + φ T̄RΨL) ; (3.4)

8
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Figure 4: Diagram representation of additional contribution to thet-quark mass. Dotted lines represent
gluons. Other notations the same as at Fig. 2.

wheregφ is the coupling constant of the new interaction to be defined by normalization condition
of the solution of equation (4.6).

Using standard perturbative method we obtain for the mass of the bound state under consider-
ation the following expression in the same way as in [3].

m2
φ = − m2

t I5√π µ I2
; I2 =

∫ ∞

µ

Ψ(z)2dz
z

; (3.5)

I5 =
∫ ∞

µ

(16π αs(z)− g2
φ )Ψ(z)dz

16π z

∫ z

µ

Ψ(t)dt√
t

.

Hereαs(z) is the strong coupling with standard evolution, normalized at thet-quark mass, and we
put m = mt . Provided term with brackets insideI5 being positive, bound stateφ is a tachyon. Let
us recall the well-known relation fort-quark mass, which is defined by non-zero vacuum average
of (φ ∗2 +φ2)/

√
2. It reads

mt =
gφ η√

2
; (3.6)

whereη = 246.2GeV is the value of the electro-weak scalar condensate.

However in our approach there are additional contribution to this mass, e.g. due to diagram
shown at4.

That means that for experimental value of thet-quark we take the modified definition

mt =
gφ η√

2
+∆M =

gφ η
f
√

2
. (3.7)

According to these diagrams we have the following expression for∆M

∆M = −4mt

∫ ∞

µ

F2(z)dz√
z

∫ ∞

µ

αs(z)F2(z)dz
2π z

−4
∫ ∞

µ

mt(z)F2(z)dz√
z

; (3.8)

mt(z) = mt

(
1+

7αs(µ)
8π

ln
z
µ

)− 4
7

.

Here the first term corresponds to gluon exchange between external legs and the second term corre-
sponds to gluon exchanges inside the loop calculated with account of standard RG mass evolution.
Contributions of gluon exchanges from external legs to internal lines cancel. Now parameterf
defined in (3.7) is the following

f = 1 + 4
∫ ∞

µ

F2(z)dz√
z

∫ ∞

µ

αs(z)F2(z)dz
2π z

+4
∫ ∞

µ

mt(z)F2(z)dz
mt
√

z
. (3.9)

9
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Figure 5: Diagrams for normalization condition forH Ψ̄L tR-vertex. Notations are the same as at Figs. 2 - 4.

Due to relation (2.8) factor f in (3.7, 3.9) is slightly larger than 2. For strong couplingαs(z) we
use the standard one-loop expression

αs(z) = αs(µ)
(

1+
7αs(µ)

8π
ln

z
µ

)−1

. αs(µ) = 0.108; (3.10)

where for strong coupling at thet-quark mass we take its value obtained by evolution expres-
sion (3.10) from its value atMZ: αs(MZ) = 0.1184±0.0007.

Let us consider the possibility when relation (3.5) leads to a tachyon state. For Higgs mecha-
nism to be realized we need also four-fold interaction

Łφ4 = λ (φ ∗φ)2 . (3.11)

Coupling constant in (3.11) is defined in terms of the following loop integral

λ =
3g4

φ

16π2 I4 ; I4 =
∫ ∞

µ

Ψ(z)4dz
z

. (3.12)

From well-known relationsη2 = −m2
φ/λ and the Higgs mass squaredM2

H = −2m2
φ we have

η2 =
16π m2

t I5
3g4

φ
√µ I2 I4

; M2
H =

2m2
t I5

π√µ I2
. (3.13)

From (3.7) and (3.13) we have useful relation

2 =
16π I5

3g2
φ f 2√µ I2 I4

. (3.14)

We obtaingφ from a normalization condition, which is defined by diagrams of5

3g2
φ

32π2

(
I2 +

αs(µ)
4π

(
I2
22+2I6

))
= 1; (3.15)

I22 =
∫ ∞

µ

Ψ(t)dt
t

; I6 =
∫ ∞

µ

Ψ(z)dz
z
√

z

∫ z

µ

Ψ(t)dt√
t

.

Here we use strong coupling at thet-quark mass (3.10) and perform necessary calculations. In
doing this we proceed in the following way: for six parametersµ, gφ , η , mt , MH , f we have five
relations (3.7, 3.13, 3.14, 3.16) and the well-known expression

MW =
gw η

2
; (3.16)

10
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wheregw is weak interaction constantg at W mass. We obtain it by usual RG evolution expres-
sion (1.15) from valueg atY (1.14). Let us remind that we considerMW as an input. Thus for the
moment we have two input parameters, which are safely known from the experiment

MW = 80.4GeV; η = 246.2GeV. (3.17)

The last value corresponds to value of electro-weak couplinggw(MW) = 0.653.
Now we present thus obtained parameters

µ = 4.067510−12; f = 2.034; gφ = 2.074; (3.18)

mt = 177.0GeV; MH = 1803GeV.

The most important result here is thet-quark mass, which is close to experimental valueMt =
173.3± 1.1GeV [23]. Really, the main difficulty of composite Higgs models [18, 19, 20, 21]
consists in too largemt . Indeed the definition ofgφ in such models leads togφ ' 3 and thus
mt ' 500GeV. In the present work we have all parameters, including inportant parameterf , being
defined by selfconsistent set of equations and the unique solution gives results (3.18), which for
mt is quite satisfactory. The large value forMH seems to contradict to upper limit for this mass,
which follows from considerations of Landau pole in theλφ4 theory. Emphasize, that this limit
corresponds to the local theory and in our case of composite scalar fields is not relevant. Such large
mass ofH means, of course, very large width ofH

ΓH = 3784GeV; BR(H →W+W−) = 51.4%; (3.19)

BR(H → Z Z) = 25.6%; BR(H → t̄ t),= 23.0%.

Thus our approach predicts, that unfortunately quest for Higgs particle at LHC will give negative
result. Maybe one could succeed in registration of slight increasing of cross-sectionsp+ p→
W+ +W−+X, p+ p→ Z+Z+X, p+ p→ t̄ + t +X in region of invariant masses of two heavy
particles1TeV< M12 < 3TeV. As a matter of fact the most recent LHC data (SMS PAS-HIG-11-
022, ATLAS-CONF-2011-135) do not find the SM Higgs in wide interval up to 466 GeV (see also
recent ATLAS result [22]).

4. W-hadrons and CDF Wjj anomaly

Thus we have triple interaction

− G
3!
· εabcW

a
µν Wb

νρ Wc
ρµ ; (4.1)

W3
µν = cosθW Zµν + sinθW Aµν ;

with uniquely defined form-factorF(pi). It was done of course in the framework of an approximate
scheme, which accuracy was estimated to be' (10−15)%.

Interaction (4.1) increases with increasing momentap and corresponds to effective dimension-
less coupling being of the following order of magnitude

ge f f =
gλ p2

M2
W

. (4.2)

11
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Figure 6: Diagram representation of Bethe-Salpeter equation for W-W bound state. Black spot corresponds
to BS wave function. Empty circles correspond to point-like anomalous three-gluon vertex, double circle –
XWW vertex. Simple point – usual gauge tripleW interaction. Double line – the bound stateX, simple line
– W. Incoming momenta are denoted by the corresponding external lines.

Thus for sufficiently large momentum interaction (4.1) becomes strong and may lead to physical
consequences analogous to that of the usual strong interaction (QCD). In particular bound states
and resonances constituting ofW-s (W-hadrons) may appear. Let us estimate the typical scale
for the effect. We know that in QCD upper bound of a region of really strong interaction (non-
perturbative region) is around600MeV whereαs' 0.5 that is couplinggs =

√
4παs = 2.5. So we

have to equatege f f (4.2) to this value and define the typical valueptyp that gives

ptyp = MW

√
ge f f

gλ
' 650GeV; (4.3)

where we have taken for modulus ofλ its maximal value from limitation (1.6). Now we have
the lightest hadron – the pion with mass' 140MeV for typical scale600MeV in QCD and for
estimatedptyp (4.3) we have possible mass of the lightest W-hadron

Mmin =
ptypMπ

600MeV
' 150GeV; (4.4)

The excess detected in work [27] is situated just in this region. So one might try to consider
interpretation of effect [27] as a manifestation of aW-hadron.

Here we would apply these considerations along with previous results to data indicating on an
excess in jet pair production accompanied byW at TEVATRON [27] in region of j j invariant mass
120− 160GeV.

Let us assume that this excess is due to existence of bound stateX of two W. This stateX is
assumed to have spin 1 and weak isotopic spin also 1. Then vertex ofXWW interaction has the
following form

GX

2
εabcW

a
µν Wb

νρ Xc
ρµ Ψ ; (4.5)

whereΨ is a Bethe-Salpeter wave function of the bound state. The main interactions forming
the bound state are just non-perturbative interactions (4.1, 4.5). This means that we take into
account exchange of vector bosonW as well as of vector bound stateX itself. In diagram form the
corresponding Bethe-Salpeter equation is presented in6.

12
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For small massMX of stateX we expand the kernel of the equation in powers ofM2
W andM2

X

and obtain the following equation

Ψ(x) =
G2 +G2

X

32π2

∫ Y0

0
Ψ(y)ydy− G2 +G2

X

32π2

(
1

12x2

∫ x

0
Ψ(y)y3dy−

1
6x

∫ x

0
Ψ(y)y2dy− x

6

∫ Y0

x
Ψ(y)dy+

x2

12

∫ Y0

x

Ψ(y)
y

dy

)
+

gG
4π2

(∫ Y0

0
Ψ(y)dy−

3
8x3

∫ x

0
Ψ(y)y3dy+

7
8x2

∫ x

0
Ψ(y)y2dy− 1

2x

∫ x

0
Ψ(y)ydy+

x
8

∫ Y0

x

Ψ(y)
y

dy− x2

8

∫ Y0

x

Ψ(y)
y2 dy)

)
− µ Ḡ

√
2

π

(∫ Y0

0
Ψ(y)dy−

1
12x2

∫ x

0
Ψ(y)y2dy+

1
6x

∫ x

0
Ψ(y)ydy+

x
6

∫ Y0

x

Ψ(y)
y

dy (4.6)

− x2

12

∫ Y0

x

Ψ(y)
y2 dy

)
− χ Ḡ

√
2

π

(
1
24

∫ Y0

0
Ψ(y)dy− 1

192x3

∫ x

0
Ψ(y)y3dy+

1
64x

∫ x

0
Ψ(y)ydy+

x
64

∫ Y0

x

Ψ(y)
y

− x3

192

∫ Y0

x

Ψ(y)
y3 dy

)
.

µ =
ḠM2

W

16π
√

2
; χ =

ḠM2
X

16π
√

2
; Ḡ =

√
G2 +G2

X .

Herex = p2 is the external momentum squared andy is the integration momentum squared. Gauge
electro-weak couplingg enters due to diagrams of the second line of6. Upper limitY0 is introduced
for the sake of generality due the experience of works [2, 3, 4, 6, 24], according to whichY0 may
be either∞ or some finite quantity. That isY0 is defined in a process of solving an equation. From
the physical point of view an effective cut-offY0 bounds a "low-momentum" region where our
non-perturbative effects act and we consider the equation at interval[0, Y0] under condition

Ψ(Y0) = 0. (4.7)

For interaction (4.1) Y0 is already defined.
We shall solve equation (4.6) by iterations. Let us perform the following substitution

z =
(G2 +G2

X)x2

512π2 , t =
(G2 +G2

X)y2

512π2 ; (4.8)

then the zero approximation reads

Ψ00(z) =
π
2

G21
15

(
z|01,0,1/2,−1/2,−1

)
. (4.9)

Now set of equations (4.6) takes the form

Ψ0(z) = INH− 2
3z

∫ z

0
Ψ0(t)tdt+

4
3
√

z

∫ z

0
Ψ0(t)

√
t dt+

4
√

z
3

∫ z′0

z

Ψ0(t)√
t

dt− 2z
3

∫ z′0

z

Ψ0(y)
y

dy;

13
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INH = 1−√z

(
g′
√

2
8π

+
8µ
3
− χ

4

)(
lnz+4γ +4ln2+ (4.10)

π
2

G21
15

(
z′0|00,0,1/2,−1/2,−1

))
+
√

z

(
g′
√

2
48π

+
68µ

9
− 25χ

32

)
;

1 = 8
∫ z′0

0
Ψ0(t)dt −

(
g′2

√
2

π
−16µ +

2χ
3

)∫ z′0

0

Ψ00(t)√
t

dt

whereγ is the Euler constant. Now we look for solutions of set (4.10). We have relation

MX = MW

√
χ
µ

; MW = 80.4GeV. (4.11)

We look for the exact solution of set of equations (4.10) in the following form

Ψ0(z) =
π
2

G21
15

(
z|01,0,1/2,−1/2,−1

)
+

C1G21
15

(
z|1/2

1/2,1/2,1,−1/2,−1

)
+

C2G20
04

(
z|1,1/2,−1/2,−1

)
+ (4.12)

C3G10
04

(−z|1,1/2,−1/2,−1
)
.

Let us choose a solution with "experimental"MX = 145GeV [27], then we have solution with the
following parameters

C1 =−0.015282; C2 =−3.26512;

C3 = 1.2796210−11; g′ = 0.03932; (4.13)

χ = 0.0074995; z′0 = 2627.975;

µ = 0.001824.

Parameters (4.13) defines the following physical parameters

G =
0.0099

M2
W

; λ = −GM2
W

g
= −0.0152;

MX = 145GeV; |GX| =
0.1639

M2
W

. (4.14)

Value λ (4.14) agrees with restrictions (1.6). Note, that set (4.10) with MX = 145GeV has also
few other solutions, but they lead to values ofλ which contradict to restrictions (1.6). On the other
hand with value ofG from (4.14) we have additional solutions for "radial excitation"X with mass
and coupling constant

MX1 = 180.7GeV; |GX| =
0.0628

M2
W

;

MX2 = 205.1GeV; |GX| =
0.1155

M2
W

; (4.15)

MX3 = 244.2GeV; |GX| =
0.1837

M2
W

.
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Figure 7: Diagram for vertexX q̄q. Dotted line – W, double line – bound stateX, simple line – a quark.
Black spot – theXWWBS wave function.

With this massX decay into pair ofW-s, i.e.

X±1,2,3 → W± +(Z,γ) ; X0
1,2,3 → W+ +W− ;

Γ(X0
1 ) = 0.0086GeV; Γ(X±1 ) = 0.0051GeV;

Γ(X0
2 ) = 0.126GeV; Γ(X±2 ) = 0.083GeV;

Γ(X0
3 ) = 1.26GeV; Γ(X±3 ) = 0.89GeV;

BR(X+
1 →W Z = 0.44; BR(X+

1 →Wγ) = 0.56; (4.16)

BR(X+
2 →W Z = 0.80; BR(X+

2 →Wγ) = 0.20;

BR(X+
3 →W Z = 0.91; BR(X+

3 →Wγ) = 0.09.

Now interaction (4.5) with parameters (4.14) defines reactions ofX±, X0 production at TEVA-
TRON and their decays. Bound statesX interact with fermion doubletsψL due to diagram presented
at7. The effective interaction is described by the following expression

LXψ = gX Xa
ν ψ̄L τa γνψL; (4.17)

gX =
g2GX M2

X

64π2

∫ z0

µ2

Ψ0(t)
t

dt = 0.0006704.

Due to interactions (4.5, 4.17) there are the following decays of bound statesX

X± → W± + γ ;(85.9%); X± → ud̄ (dū)(9.5%);

X0 → uū;(71.4%) ; (4.18)

Taking into account other quarks and leptons we obtain total widths and necessary branching ratios

Γt(X±) = 0.004393GeV : BR( j j ) = 0.0664;

BR(W± γ) = 0.900; (4.19)

Γt(X0) = 0.000511GeV : BR( j j ) = 0.714;

where we associate a jet with each quark. Small total widths do not contradict to data [27] because
the observed width of the enhancement corresponds to experimental resolution. One has also to
bear in mind that real masses of neutral and chargedX may differ by fewGeV.

For estimation ofX production cross-sections we have to take into account that according to
EW gauge invariance isotopic tripletXa necessarily interacts with gauge fieldWa and the interac-
tion vertex is just the gauge one with the same couplingg

Γabc
µνρ(p,q,k) = gεabc

(
Φκ(p,q,k)κ(gνρkµ −gρµkν)+

Φg(p,q,k)
(
gµν(qρ − pρ)−gνρqµ +gρµ pν

))
; (4.20)
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whereΦκ,g(pi) are form-factors, which are equal to unity forW momentumk = 0 and other two
momentap, q on the mass shell,κ is the well-known parameter describing quadrupole interac-
tion of a vector particle. In the present approximationκ = 0. Effective total energy for partons’
collisions at TEVATRON is around330GeV that is essentially smaller than typical value (4.3).
Thus, for estimates of cross-sections at TEVATRON we takeΦg = 1. However at LHC energy is
essentially larger and form-factors influence results. For the sake of estimates we will take for LHC

Φg(p,q,k)'Ψ(k2)2; k2 = (1400GeV)2 ; p2 = q2 = M2
X ' 0; (4.21)

where we take for the energy of parton collisions one fifth of the total energy bearing in mind that
point-like interaction leads to increasing cross-sections. In doing assumption (4.21) we take into
account that in the first approximationFg is defined by one loop diagram withΨ in each vertex.

So taking into account all relevant interactions (4.5,4.17,4.20) we obtain the following esti-
mates for cross-sections for energy

√
s= 1960GeV

σ(pp̄→W±X0 + ...) = 1.86pb;

σ(pp̄→W∓X±+ ...) = 1.71pb;

σ(pp̄→ Z X±+ ...) = 1.37pb; (4.22)

σ(pp̄→ X0X±+ ...) = 0.35pb;

σ(pp̄→ X∓X±+ ...) = 0.24pb.

Taking into account branching rations (4.19) we obtain for additionalW j j and Z j j production
in the region of enhancement the following estimate. We also divide cross-section forjet− jet
production into two parts: with accompanyingγ and withoutγ

σ(pp̄→W±+ γ +2 j + ...) = 0.26pb;

σ(pp̄→W±+2 j + ...) = 1.49pb; (4.23)

σ(pp̄→ Z+2 j + ...) = 0.13pb;

Total cross-section forW j j +W j jγ (1.75pb) occurs to be considerably smaller than result [27]
σ(W j j) = 4.0±1.2pb whereas small value forZ j j production quite agrees with [27] data. How-
ever just recently results ofD0 appear [25], which do not support large value forσ(W j j) and give
upper limit for cross-section under studyσ(W j j) < 1.9pb (95% C.L.). As a matter of fact our
result (4.23) evidently does not contradict both experimental results, because it differs from CDF
number by less than two s.d..

The production of radial excitationsXi may be compared with data on search of resonantWW
andWZ production [32]. The results following from values of parameters (4.15, 4.16) are the
following (Bi = BR(Xi →W W(Z)))

X1 : σB1 = 0.15pb; X2 : σB2 = 0.76pb; X3 : σB3 = 1.64pb. (4.24)

These results by no means contradict upper limits of work [32]. Note thatXi production is accom-
panied by additional boson eitherW or Z. Thus we predict effects in triple weak boson production:
W±W+W−, W+W−Z, W±Z Z, which are connected withXi production.
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Processp+ p→W±+ γ + ... was studied at LHC for energy
√

s= 7TeV [30]. The results in
comparison to SM calculations are the following

σ(W±γ) = 56.3±5.0(st)±5.0(sy)±2.3(lu) pb;

σ(W±γ)SM = 49.4±3.8pb. (4.25)

The cross-sections for production ofX± andX0 at LHC are estimated to be

σ(p p→W±X0 + ...)' 7.9pb;

σ(p p→W±X∓+ ...)' 4.7pb;

σ(p p→ ZX±+ ...)' 5.7pb; (4.26)

σ(p p→ X∓+ ...)' 0.8pb;

σ(p p→ X0...)' 0.6pb.

These results are just estimation by an order of magnitude due to significant influence of form-
factors in interactions (4.5, 4.20) at energy of LHC. In calculations we have used average val-
ues of form-factors in the region corresponding to the most probablese f f of partons:

√
se f f '

700GeV [33]. Additional contribution from processes (4.26) to W± γ production reads

∆σ(W±γ)' 9.7pb. (4.27)

We see that here we also have no contradiction with data (4.25). Let us emphasize that this process
is quite promising for checking of our scheme, because we not only predict additional contribu-
tion (4.27) but we insist that this additional contribution means production of narrow resonanceX±

with mass around145GeV which decays mostly toW±+ γ.

Results of this section are obtained in work [34]. For calculations of cross-sections and decay
widths the CompHEP package [35] was used.

5. Conclusion

To conclude we would emphasize, that albeit we discuss quite unusual effects, we do not deal
with something beyond the Standard Model. We are just in the framework of the Standard Model.
What makes difference with usual results are non-perturbative non-trivial solutions of compensa-
tion equations. With the present results we would draw attention to two important points. Firstly,
the unique determination of gauge electro-weak coupling constantg(MW) and calculation of thet
- quark mass in close agreement with experimental values. These results strengthen the confidence
in the correctness of applicability of Bogoliubov compensation approach to the principal problems
of elementary particles theory. Secondly, we have seen, that non-perturbative contributions lead to
prediction of experimental effects which are investigated at LHC and TEVATRON. These predic-
tions at least do not contradict to the totality of data. More than that, there are some indications on
agreement of several important effects with the predictions (the almost proved absence of Higgs
scalar in the most popular region, a possibleW W-bound state).
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