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higher twists coefficients turn out to be highly unstable with respect to the order approximations.
On the contrary, the usage of the analytic perturbation theory allows to describe the Jefferson
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1. Introduction

Among the moments of the proton and neutron structure functions, the Bjorken sum rule [2]
is one of the convenient tests of the perturbative QCD (pQCD). Since this sum rule relates the
difference of the proton and neutron first moments, only flavor non-singlet quark operators appear
in the operator product expansion. The Q?-evolution of the Bjorken sum rule is given by a double
series in powers of 1/Q? (nonperturbative power corrections) and in powers of the QCD running
coupling a5(Q?) (pQCD radiative corrections). Until very recently, the pQCD contribution to the
Bjorken sum rule has been known up to a third order in perturbative o expansion [3]. So far, the
corresponding expression have been used in many studies aimed, in particular, to extraction of the
o, values at low momentum scales [4, 5].

The four-loop expression for the pQCD contribution to the Bjorken sum rule, which became
recently available [6], gives us a reasonable motivation for a new extended QCD analysis of the
precise low energy combined data on 'Y Q%) [7, 8, 9] accounting for up to o-order in both
the standard perturbation theory (PT) and the ghost-free analytic perturbation theory (APT) [10].
The APT approach takes into account basic principles of local quantum field theory which in the
simplest cases is reflected in the form of Q”-analyticity of the Killén—Lehmann type (see, e.g.,
[11] for a review). As has been demonstrated in [12] (see also [13, 14]), the moments of the
structure functions are analytic functions in the complex Q%-plane with a cut along the negative
real axis. The usage of the APT approach gives the possibility of combining the renormalization
group resummation with correct analytic properties of the pQCD correction [15, 16].

In this report, we concentrate on the features of the four-loop PT and APT expansions in the
analysis of the Bjorken sum rule and on the interplay between the nonperturbative power correc-
tions (higher twists) and higher order pQCD corrections at low momentum scales.

2. The perturbative part

Away from the large Q7 limit, the Bjorken sum rule can be written as the perturbative QCD
part and the higher twist contribution

(@) =% [1 - ABj(QZ)] +Y QZ‘?; : @.1)
i=2

where g, is the nucleon axial charge defined from the neutron -decay data, g4 = 1.26740.004 [17],
the higher twist (HT) coefficients L4, Ug, ... contain the information on quark-gluon correla-
tions in nucleons. The perturbative correction, ABJ-(QZ), is defined by the coefficient function Cg;:
Agj(Q?) = 1 —Cgj(). In the standard PT case, the approximation for Agj(Q?) has a form of the
power series in the PT running coupling. At the up-to-date four-loop (N*LO) level in the massless
case

AF(QY) =105+ 202 + 30 + ca0rd, 2.2)

where the expansion coefficients ¢; in the modified minimal subtraction scheme, MS, for three
active flavors are ¢; = 1/m = 0.31831, ¢; = 0.36307 [18], c3 = 0.65197 [3] and ¢4 = 1.8042 [6].
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The PT running coupling can be obtained numerically by integration of the renormalization group
equation with the four-loop f-function (see [19, 20, 21] for additional details).

As outlined above, the moments of the structure functions are analytic functions of Q2 in the
complex Q*-plane with a cut along the negative part of the real axis. The perturbative represen-
tation (2.2) violates these analytic properties due to the unphysical singularities of the PT running
coupling for Q? > 0. To avoid this problem, we apply the APT method [10, 11]. In the framework
of the APT, the correct analytic properties of the perturbative expansions are preserved at any fixed
order including the four-loop one. The corresponding expression for Ag; (Q?) reads as

AQJPT(QZ) —c ,SZ{(I)(QZ) —|—C2,Q{(2)(Q2) + c3 JZ{B)(Qz) —|—C4=Q{(4)(Q2), (23)

where coefficients c;, ¢, ¢3 and ¢4 are the same as in (2.2), and functions &/ (k)(QZ) can be ex-
pressed through the spectral functions pi(c) = Im [aX(—o — i€)] by the Kéllen-Lehman represen-
tation

1 [ pilo)
Q%) =~ / do : 2.4

(@) ) o+Q? 4
At large momentum transfers, analytic functions &/ (k)(Qz) become proportional to k-th power of
the usual perturbative coupling, [as(Q?)]¥, and the expansion (2.3) reduces to the power series
(2.2). However, at small Q? the properties of the non-power expansion (2.3) become considerably
different from the PT power series (2.2) (see, e.g., [15] for details).

2.1 The Q*-dependence

Let us analyze the Q?-dependence of the Bjorken sum rule in the framework of both PT and
APT approaches in different orders (NLO, N?LO and N3LO) of the perturbative expansions (2.2)
and (2.3), respectively. As a normalization point, we use the most accurate o-value at Q% = M%,
as(M2) = 0.1184 4 0.0007 [17, 21]. In order to take into account flavor thresholds, we apply
the matching conditions for the values of ¢ which are rather nontrivial in higher PT orders (see
[19, 21, 22]). Following to analysis in [23], our matched calculation for the four-loop MS-coupling
gives Alr=3) =340+ 10 MeV.

In Fig. 1, we illustrate the behavior of the perturbative part of the Bjorken sum rule in different
orders in o in both PT and APT approaches. For completeness, we also show here the combined
SLAC and Jefferson Lab (JLab) data on I'}™"(Q?) which are used in our analysis. The SLAC
data points [8] are denoted by squares, the JLab CLAS Hall A 2002 data — by downward pointing
triangles, the JLab CLAS Hall B 2003 data — by circles [9], and the most recent JLab data [7]
— by stars. The horizontal dotted line represents the limiting value T "(Q? — o) = g4/6. As it
follows from this figures, in the framework of the standard PT, the low energy behavior of '} Q%)
is strongly dependent on the order of the initial expansion, and the lower border of satisfactory
description of the JLab data shifts towards the larger Q? values when increasing the number of
loops in the pQCD expansion (2.2). In the framework of the APT, we observe the higher-loop
stability given the fact that curves corresponding to different orders in APT are very close to each
other (practically coincide with each other). At the same time, the deviation of APT curve from the
data shows for necessity of including HT terms.
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Figure 1: The Bjorken sum rule without HT Figure 2: The p-scale ambiguities vs. @ in dif-
terms in different orders in the PT and APT. ferent orders in the PT and APT.

A truncation of a perturbative expansion leads to uncertainties in the theoretical predictions
arising from the renormalization scale [-dependence of the partial sum of the series. To estimate
the ambiguity in choosing the renormalization scale U, we use the following four-loop expression

for the coefficient function Cg; [6]

Cpj (xu,05) = 1—0.31831 a5 (1?) + [—0.36307 — 0.227971n (x,,)] o (1*) (2.5)
+ [-0.65197 — 0.649061n (x, ) —0.163271n? (x,)] 0 (1?)
+ [—1.8042 — 1.79841n (x,) — 0.789681n? (x, ) — 0.116941n> (x,)] o (1?)

where the dimensionless parameter x, is introduced as x; = p?/Q? and in our analysis is changed
within the interval 0.5 < 2.

In Fig. 2 we compare the pt-scale ambiguities between the two-, three- and four-loop PT and
APT series at low Q. This figure demonstrates that in the considered region of Q? there is an
essential difference between p-dependence of PT and APT expansions. The APT result is practi-
cally u-scale independent, and the standard PT is rather sensitive to Ll-scale variations indicating
quite significant theoretical uncertainties of the corresponding PT expansions. As it is seen from
this figure, the N3LO PT approximation does not improve the j-scale ambiguities compared to the
N2LO one (see the u-scale analysis in [24] for comparison).

Let us turn now to the perturbative QCD correction ABj(Qz) truncated after four-loop order
and demonstrate the convergence properties of the PT power series (2.2) and the APT series (2.3).
For this purpose we consider the relative contributions, N,-(QZ), for i-th term of Ag;j-series as a
function of the Q2 in the PT and APT cases.

We present our results in Figs. 3 and 4. One can see from Fig. 3 that the dominant contribution
for the PT series (2.2) comes from the four-loop term in the region of small momentum transfers
0? < 1 GeV?. Moreover, when decreasing Q7 its relative contribution increases. In the region

0? > 2 GeV? the situation changes — the major contribution comes from one- and two-loop orders
there. So, the fourth order PT correction to the Bjorken sum rule does not improve the convergence

that is presumably due to an asymptotic character of the PT series.
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Figure 3: The Q’-dependence of the relative
contributions at the four-loop level in the PT.
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Figure 4: The Q*-dependence of the relative
contributions at the four-loop level in the APT.
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Figure 5: The p4-fits of the JLab data in various
orders of PT and APT.

Figure 6: The L4 ¢ g-fits of the JLab data in var-
ious orders of PT and APT.

The result for the APT series (2.3) is presented at Fig. 4. This figure demonstrates that there
is an essential difference between PT and APT cases. The APT expansion obeys much better
convergence than the PT one. In the APT case, the higher order contributions are stable at all Q?,
and one-loop contribution gives about 70 %, two-loop — 20 %, three-loop — not exceeds 5%, and
four-loop —up to 1 %.

3. Higher twists terms

The QCD description of the Bjorken sum rule [see (2.1)] contains the perturbative part dis-
cussed above and the HT terms. One of the actual theoretical subjects is the interplay between
these contributions. At low Q7 these interplay may become very large. Previously, a detailed
higher-twist analysis for the Bjorken sum rule at the two- and three-loop level in the framework
of both PT and APT was performed in [16]. It was shown that the infrared behavior of the strong
coupling is crucial for the extraction of the nonperturbative information from the low-energy data.
Here, we extend the analysis started in [16] to an order ~ ¢¢*. Using the expression (2.1) being fitted
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to above mentioned experimental data [7, 9], we extract coefficients Lip; of the HT contribution (see,
for detail, [1]). In Figs. 5 and 6 we present the results of 1- and 3-parametric fits in various orders
of PT and APT. The corresponding fit results for values of HT coefficients, extracted by using the
different orders of PT and APT, are given in Table 1 (all numerical results are normalized to the
corresponding powers of the nucleon mass M).

Method | 0%, | wa/M?> | pe/M* | ps/M |22,
The best u4-fit results
PT NLO 0.5 | —0.028(3) — — 0.80
PTN?LO | 0.66 | —0.014(5) — - 0.59
PTN3LO | 0.71 | 0.006(7) - - 0.51
APT 0.47 | —0.050(2) — — 0.82
The best Uy ¢ g-fit results
PTNLO | 0.27 | —0.026(9) | —0.01(1) 0.008(4) | 0.69
PTN?LO | 0.34 0.01(2) | —0.06(4) 0.04(2) 0.67
PTN3LO | 0.47 0.05(3) | —0.17(9) 0.12(6) 0.46
APT 0.08 | —0.061(2) | 0.009(1) | —0.0004(1) | 0.91

Table 1: Results of HT extraction from the JLab data on the Bjorken sum rule in various orders of PT and
all orders of APT with left border Q2 [GeV?] of fitting domain.

min

One can see that the difference between the PT and APT results are significant. Since the APT
approach exhibits the higher loop stability, the values of HT coefficients extracted in the NLO,
N2LO and N3LO APT coincide within the data fits uncertainty. Besides, coefficients extracted
from the data in the standard PT approach in different PT orders are different. The value of 4
coefficient, for example, at two- and three-loop levels is negative, whereas at the four-loop level it
becomes positive. From these figures and Table follows that APT allows one to move further down
to Q> ~ 0.08 GeV>.

4. Summary

We have considered the Bjorken sum rule by using the standard PT and APT approaches up
to four-loop level. At high Q? scales, the PT and APT results close to each other, both including
the HT terms and without them, whereas at low Q? scales, the difference between the PT and
APT results becomes very significant. We have observed that the ordinary PT series for the pQCD
correction to the Bjorken sum rule gives a hint to its asymptotic nature manifesting itself in the
region Q? < 1 GeV2. It relates to the observation that the accuracy of both the three- and four-loop
PT predictions happens to be at the same 10% level. Besides, the related values of the higher twists
coefficients turn out to be highly unstable with respect to the order PT approximations. On the
contrary, the usage of the analytic perturbation theory allows to describe the Jefferson Lab data
down to Q ~ Aqcp and gives a possibility for reliable extraction of the higher twist coefficients.

This work was partly supported by the BeIRFFR-JINR grant F10D-001 and the RFBR grant
11-01-00182.
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