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For the calculation of multi-loop Feynman integrals, a novel numerical method, the Direct Com-

putation Method (DCM) is developed. It is a combination of a numerical integration and a series

extrapolation. In principle, DCM can handle diagrams of arbitrary internal masses and external

momenta, and can calculate integrals with general numerator function. As an example of the

performance of DCM, a numerical computation of two-loop box diagrams is presented. Further

discussion is given on the choice of control parameters in DCM. This method will be an indis-

pensable tool for the higher order radiative correction when it is tested for a wider class of physical

parameters and the separation of divergence is done automatically.
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1. Introduction

The high-statistics data in high-energy physics requires the theoretical prediction with enough
accuracy. The prediction can be given by perturbative calculation in quantum field theory. Then
the multi-loop integral is an indispensable component for the theoretical study.

We define the multi-loop integrals by the following formula where the space-time dimension is
denoted asn = 4−2δ 1. Here we confine the discussion to scalar integrals only. Since the method
presented below is basically numerical, the inclusion of a numerator will be straight-forward.

I =
∫ L

∏
j=1

dn` j

(2π)ni

N

∏
r=1

1
Dr

(1.1)

where the propagator isDr = q2
r −m2

r + iε , N is the number of propagators andL is the number of
loops. We combine the propagators by the standard Feynman parameter integral

N

∏
r=1

1
Dr

= (N−1)!
∫

∏dxr
δ (1−∑xr)
(∑xrDr)N (1.2)

and perform integration with respect to the loop momenta. We obtain

I =
Γ(N−nL/2)

(4π)nL/2
× I , I = (−1)N

∫
∏dxr

δ (1−∑xr)
Un/2(V − iε)N−nL/2

, (1.3)

V = M2− W
U

, M2 = ∑
r

xrm
2
r (1.4)

whereU andW are polynomials in thex parameters[1].
In Section 2, we propose a unique method to calculate the integralI in Eq.1.3. We call the

method the Direct Computation Method (DCM). In the preceding works[2], DCM has successfully
calculated one-loop and two-loop diagrams. As an example we show the results for the two-loop
box diagrams in Section 3 and also report a study on the parameters in DCM. We discuss further
aspects of DCM in Section 4.

2. Method

DCM consists of a regularized numerical integration and an extrapolation of a numerical se-
quence.

In order to illustrate the idea of regularized numerical integration, let us consider a simple
integral:

J =
∫ 1

0

dx
m2−sx(1−x)− iε

(2.1)

As is shown in Fig.1, the integrand of Eq.2.1has singular points whens> 4m2. Analytically,
this can be handled by takingε as an infinitesimal positive quantity, or, in other words, by the hyper-
function formula 1/(z− iε) = P(1/z)+ iπδ (z). Numerical computation is unstable if the integrand
is divergent at some points. A way to solve the situation is to deform the path in the complexx

1The symbolε is reserved for the (infinitesimal) parameter in the propagator.
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Figure 1: Integral paths for (a) analytical calculation and for (b) DCM. The cross (×) stands for the singu-
larity of integrand.

plane to avoid the singular points. However, the deformation would be very complicated for the
integrand of a multi-variable function. Another possibility is to assume thatε is a finite quantity as
is shown in Fig.1(b). Then, the numerical integration along thex-axis is stable. If we can calculate
the limiting value forε → 0, it is the value of the integralJ.

The loop integralI(ε) is defined by

I(ε) = (−1)N
∫

∏dxr
δ (1−∑xr)(V + iε)N−nL/2

Un/2(V2 + ε2)N−nL/2
, (2.2)

and if ε andδ are finite, the numerical integration can be performed using a suitable numerical
computation library.

We useε determined by a (scaled) geometric sequence

ε = εl = ε0/(Ac)l , (l = 0,1, · · ·) (2.3)

for constantsε0,Ac (Ac > 1). Then we expect

I = lim
l→∞

I(εl ). (2.4)

Repeating the numerical integration, we obtain a sequence of numerical values ofI(εl ) for
l = 0,1, . . . , lmax. From these values and using an extrapolation method, we can estimate the value
of I with enough accuracy.

Next we discuss the singularity originating fromδ → 0. In Eq.2.2, V2 + ε2 is positive and
U is positive semi-definite. Only at the boundary of the integration regionU becomes 02. When

δ →+0, it is either integrable like
∫

0
dxdy

1

(x+y)1−δ or non-integrable like
∫

0
dx

1

x1−δ . In the latter

case it develops a pole term∼ 1/δ as the ultraviolet singularity3. Depending on the masses and
external momenta,V can be 0 inside the integration region to develop the imaginary part ofI 4,
and also can be 0 at the boundary of integral region (as in the case ofU) to develop an infrared

2U is a sum of monomials ofx.
3The singular pole also appears in the first factor of Eq.1.3 if N−nL/2≤ 0 for δ = 0.
4For illustration, one assumes thatN−nL/2 = 1 and the variables are transformed intoV andx′r variables. Then,

omitting the Jacobian and other details, the imaginary part becomes
∫

∏dx′r

∫ V2

V1

dV
ε

V2 + ε2 . In the limit asε → +0,

the inner integral is finite ifV2 > 0 > V1 and 0 otherwise.

3
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singularity pole∼ 1/δ . If Eq.2.2 is free from these singularities, we just putδ = 0. If not, the
integral in Eq.2.2 is denoted asI(δ ,ε) and we first calculateI(δ ) = lim l→∞ I(δ ,εl ) as in Eq.2.4
fixing δ . Then, we assume the following form:

I(δ ) = · · ·+ C−1

δ
+C0 +C1δ + · · · (2.5)

We calculateI(δ ) for a set of values ofδ and estimate the coefficientsCj . For instance, in case of
a single pole,δ I(δ ) = C−1 +C0δ +O(δ 2) and we extractC−1 andC0

5.
So much for the description of DCM and one can understand the necessity of an efficient

library for the numerical integration and that for the extrapolation. For the former we useDQAGE[3]
which is a variant of Gaussian quadrature. Since it works adaptively, one can specify the accuracy
of the numerical results, although the high accuracy costs in computation time. For the latter we
use Wynn’sε algorithm[4] 6 which predicts the limiting value by the following iteration. We set
the results of the numerical integration as initial values of the seriesa(l ,k):

a(l ,−1) = 0, a(l ,0) = I(εl ), l = 0,1, · · · . (2.6)

The elementa(l ,k+1) is obtained by the following recurrence relation:

a(l ,k+1) = a(l +1,k−1)+
1

a(l +1,k)−a(l ,k)
, l = 0,1, · · · . (2.7)

Whilst thea(l ,k) values with oddk are meant to store temporary numbers, thea(l ,k) with evenk
give extrapolated estimates.

3. Numerical results

We calculate the integrals for the two-loop box diagrams shown in Fig.2. The parameters are
m1 = m2 = m5 = m6 = m= 50GeV,m3 = m4 = m7 = M = 90GeV,p2

1 = p2
2 = p3

3 = p2
4 = m2 and

t = (p1 + p3)2 = −(100)2GeV2. We takes= (p1 + p2)2 variable and introduce a dimensionless
variable fs = s/m2.

p1

p2 p4

p3 p1

p2 p4

p31 1

2 2

3 34 7

5

6

4

6

5

7

(a) (b)

Figure 2: (a)Two-loop planar box diagram and (b) Two-loop non-planar box diagram. The mass of internal
line k is mk. Each external momentum flows inward.

The explicit form of theU andW functions is found in [5]. Since there is no ultraviolet/infrared
divergence, we putδ = 0 in Eq.1.3. The integral is 6-dimensional and we perform a transformation

5And alsoC1 is necessary if the first factor of Eq.1.3 is singular.
6This ’ε ’ has nothing to do with the parameter in propagators.
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of the integration variables onto a 6-dimensional hypercube[0,1]6. By this transformation one can
cancel common variables between the numerator and the denominator. The results are presented in
Fig.3 and in Fig.4. In [5], we verified the results by comparison with another computation which is
a combination of algebraic transformations and numerical integration, and also by the consistency
check between the real and imaginary parts through the dispersion relation.
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Figure 3: Numerical results ofI for the planar diagram in units of 10−12 GeV−6 for 0.0 ≤ fs ≤ 25.0 and
t = −10000.0GeV2. Plotted points are the real part (bullets) and the imaginary part (squares). For the latter,
the regionfs > 10 is not yet computed.
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Figure 4: Numerical results ofI for the non-planar diagram in units of 10−12 GeV−6 for 0.0 ≤ fs ≤ 20.0
andt = −10000.0GeV2. Plotted points are the real part (bullets) and the imaginary part (squares).

In DCM, the validity of the extrapolation depends on the choice of the values ofε . We keep
finite value ofε in the numerical integration, so that its physical dimension is the same as the
squared mass. We have two parameters in Eq.2.3. Ac is normallyAc = 2 and we can useAc = 1.2
or 1.3 to obtain a less computational intensive sequence of integrals asε decreases more slowly. In
order to study the choice ofε0, the initial value of the iteration, we have calculated the following
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Figure 5: The real part(lower points) and imaginary part(upper points) of one-loop scalar vertex integral
I(ε) are shown. The horizontal red line is the exact (analytical) value.

on-mass-shell one-loop vertex integral as an example:

I =
∫

0≤x+y≤1
dxdy

1
M2(1−x−y)+m2

e(x+y)2−sxy− iε
(3.1)

Here,s= 5002GeV2 andme = 0.5×10−3GeV. The value of this integral is computed with a given
value ofM andε = 1.270−m for m= 0,1, . . . ,120. Then we use the values form,m+1, . . . ,m+14
as the input of extrapolation. This means that we takelmax = 14 andε0 = 1.270−mGeV2 for m=
0,1, . . . ,100.

Table.1 Extrapolated values ofI . 15 values,I(εl ) = ε0/(1.2)l , (l = 0, . . . ,14), are used for the
extrapolation. Error is not the difference from the analytical value but estimated from the extrapo-
lation.

ε0 Real part ofI error Imaginary part ofI error
3.49E+05 -1.75104242540072E-05 1.65E-09 2.25556360020931E-09 1.80E-09
5.63E+04 -1.75105247961553E-05 3.02E-13 -2.96789310051170E-05 8.78E-08
9.10E+03 -1.75105248407057E-05 1.55E-14 4.35402513918612E-05 1.82E-09
1.47E+03 -1.75105250993412E-05 6.78E-21 4.34982757936633E-05 4.04E-13
2.37E+02 -1.75105250996915E-05 2.76E-16 4.34982757936633E-05 4.04E-13
3.83E+01 -1.75105250989527E-05 1.40E-17 4.34982788205288E-05 1.92E-17
6.19E+00 -1.75105250987944E-05 3.58E-18 4.34982788206820E-05 5.55E-16
1.00E+00 -1.75105251104117E-05 1.22E-15 4.34982788654878E-05 9.93E-14
1.62E-01 -1.75105250921691E-05 1.98E-16 4.34982793676347E-05 2.11E-14
2.61E-02 -1.75105251352866E-05 1.71E-15 4.34982790401757E-05 4.97E-14
4.21E-03 -1.75105251110498E-05 4.07E-15 4.34982788582295E-05 2.21E-17

(analytical) -1.75105250974494E-05 4.34982788194091E-05

The calculated results forM = 90GeV are shown in Fig.5 and Table.1. It is to be noted thatε
in DCM is obviously finite. One can see that even when the value ofI(ε) differs from the analytical
value, the extrapolation gives a good estimation. There is a finite region that shows the agreement
between the analytical value and the extrapolated one. This behavior demonstrates that DCM is
stable up to some extent for the choice ofε0 parameters. We have tested the similar analysis for
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several values ofM (M = 1,101,102,103GeV) and found similar behavior. Though we need more
tests for this point, we can temporally conclude thatε0 is not need to be very small but it can be set
to the typical squared mass in the denominator of the integrand.

In the calculation of the two-loop box diagrams described above, we have checked the conver-
gence of the extrapolation step-by-step. The value used forε0 is 1.240 ∼ 1.245GeV2 which would
be consistent with the above conjecture.

4. Summary

In this paper, we have outlined DCM and calculated the two-loop scalar box integral as an
example to show its applicability. Since the radiative correction in the electroweak theory (or in the
SUSY model) involves various combinations of mass parameters in the integrand, DCM is a good
candidate to handle general loop integrals.

In order to use DCM for the calculation of higher-order radiative corrections, we plan to pro-
ceed to the following research.

1. The method should be tested for a wider class of diagrams with various combinations of
masses and external momenta and with the numerator structure.

2. Further study on the choice of parametersε0,Ac is required for a stable application.

3. The variable transformation is sometimes important for good convergence. This is to be
processed in an automatic manner.

4. In dimensional regularization, the ultraviolet/infrared divergence appears as a pole 1/δ . The
separation of the infrared pole is already done successfully in [6]. A similar treatment of
ultraviolet poles is expected.

5. Sometimes DCM needs long computational time. It will be important to perform the com-
putations in a parallel computing environment.
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