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We propose a general framework to calculate the non-perturbative structure of relativistic bound
state systems. The state vector of the bound state is calculated in the covariant formulation of
light-front dynamics. In this scheme, the state vector is defined on the light front of general
position ω · x = 0, where ω is an arbitrary light-like four vector. This enables a strict control of
any violation of rotational invariance. The state vector is then decomposed in Fock components.
Our formalism is applied to the description of the nucleon properties at low energy, in chiral
perturbation theory. We also present here an example of the nucleon self-energy calculation
within the so-called Taylor-Lagrange regularization scheme, and show that it is very adequate in
order to treat divergences in this non-perturbative framework.
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1. Introduction

The understanding of the nucleon properties from an effective Lagrangian at low energy, ex-
pressed in terms of asymptotic degrees of freedom, nucleons and pions, is of great theoretical
interest. For this purpose it is necessary to develop a consistent framework in order to calculate
nucleon properties from a chiral effective Lagrangian order by order in a well defined and well
controlled approximation scheme. This framework should be a priori nonperturbative to be able to
calculate bound state properties.

The need for a full nonperturbative framework is also motivated by the recent observation that
πN resonances, and in particular the ∆ resonance, play an important quantitative role. The role of
ππ resonances, like the σ or ρ resonances, is also known for more than 30 years in the study of
the nucleon-nucleon potential. Very little has been done over the last few years to develop a truly
nonperturbative framework in this domain.

We advocate a completely new way to look at the nucleon structure at low energies in terms
of an effective chiral Lagrangian: the Light-Front Chiral Effective Field Theory (LFχEFT). This
formalism is relativistic, nonperturbative and defined in a well controlled approximation scheme.

2. The main features of LFχEFT

We start from the standard expansion of the chiral effective Lagrangian in terms of derivatives
of the pion field, or, more precisely, of the U field defined by

U = ei~τ.~π
F0 , (2.1)

where ~π is the pion field, F0 the pion decay constant in the chiral limit, and ~τ the usual isospin
Pauli matrices. The explicit calculation of nucleon properties relies on an extra approximation in
the sense that physical amplitudes are further calculated by expanding this Lagrangian in a finite
number of pion fields.

There is a natural framework to deal with all the above requirements, and to control in a
systematic way the expansion in terms of the pion field. This framework is known as light-front
dynamics (LFD) as proposed in 1949 by Dirac [1]. It corresponds to a Hamiltonian formulation
particularly suited for the calculation of bound state properties. In the original form of LFD, the
state vector of any physical compound system is projected on the hypersurface t+ = t + z/c.

The light front hypersurface t+ = t + z/c is not rotational invariant. This implies in particular
that two generators of rotations of the Poincaré group are dynamical. An explicitly covariant formu-
lation of LFD (CLFD) has been developed by V.A. Karmanov [2] and applied to few-body physics
in Ref. [3] in order to treat in a simple and transparent way this dynamical character. Within this
formalism, the state vector is defined on the plane characterized by the equation ω · x = 0, where
ω is an arbitrary light-like 4-vector. The standard LFD plane corresponds to the particular choice
ω = (1,0,0,−1). Of course, physical observables should coincide in both approaches in any exact
calculation. However, in approximate calculations, the use of CLFD is of particular interest. In that
case, this framework allows to separate physical observables from ω-dependent unphysical ones in
a very transparent way, while exact calculations should not depend on the arbitrary position of the
light front.
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Figure 1: Vertex function of order n for the N-body Fock space truncation

One of the main advantages of Light-Front Dynamics (LFD) is that the vacuum state of a
physical system coincides with the free vacuum. All intermediate states result from fluctuations of
the physical system. So it is very natural to decompose the state vector φ(p) in a series of Fock
sectors:

φ(p) = |1〉+ |2〉+ ...+ |N〉+ ...

Each term of this expansion denotes a state with a fixed number, n, of particles from which the
physical system can be constructed. For obvious practical reasons, this expansion should be trun-
cated. We shall call N the maximal number of Fock sectors under consideration. Each Fock sector
is then described by a non-perturbative many-body component, called vertex function. Graphically,
the vertex function of order n, i.e. including n particles, in a truncation to order N, is represented
by the diagram of Fig. (1). It is denoted by Γ(N)

n . This state vector is a solution of the general
eigenvalue equation

P̂2φ(p) = M2φ(p) , (2.2)

where P̂ is the full momentum operator and M is the physical bound state mass.
Even at the level of two-body Fock space truncation one deals with apriori divergent loop in-

tegrals. It is necessary to use a regularization scheme which enables to clearly disantangle physical
momentum scales given by the dynamics of the effective regularization scheme. In our present
study we use the so called Taylor-Lagrange regularization scheme (TLRS). This scheme is based
on the Epstein-Glaser [4] procedure to define physical amplitudes in terms of operator valued dis-
tributions acting on test functions with well defined mathematical properties.

From the practical point of view we attach to any singular amplitude the so-called super regular
test function (SRTF), i.e. the function of finite extension – or finite support – vanishing with all
its derivatives at boundaries. A practical example of construction of the test function is shown in
Ref. [5]. Thus any physical amplitude associated to a singular distribution T (X), can be written as

A =
∫ ∞

0
dX T (X) f (X), (2.3)

for a one dimensional variable X , f (X) is an SRTF.
All amplitudes are then finite from the start, and depend on an arbitrary, finite, dimensionless

scale.
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3. Example of calculation: the self-energy

In this section we illustrate how to apply our approach in practical calculations. We consider
here a simple example: the calculation of the mass correction of the nucleon in chiral limit.

The nucleon mass receives a correction from the self-energy contribution, as shown in Fig. 2.
To characterize this correction, we calculate the function

∆≡M− M̄ = δm(M,µ)−δm(M̄,0).

Figure 2: Renormalization of the fermion propagator in second order of perturbation theory

Hereafter we will denote the nucleon mass in the chiral limit by M̄, and δm is the so called
mass counterterm which is equal to the self-energy contribution to the physical fermion propagator
at the pole defined by p2 = M2. In the first order of perturbation theory we can calculate δm as a
function of the coefficients of the self-energy according to the decomposition

δm(M,µ)≡ Σ(p) |6p=M= A(M,µ)+B(M,µ),

where we used the following general representation of the self-energy as a function of the nucleon
momentum p:

Σ(p) = A(p2)+
6 p
M

B(p2)+
6ωM
ω p

C(p2),

µ is the pion mass. The self-energy is a loop integral so it is apriori divergent. In order to oper-
ate with finite amplitudes we use here the TLRS. We attach the test functions to the self-energy:
f 2(k2

1/Λ2) f 2(k2
2/Λ2), where k1 and k2 are momenta of intermediate boson and fermion propa-

gators and Λ is a dimensional parameter. Because of specific mathematical properties of the test
functions we are able to identify f 2 with f . We have to treat divergences only in the limit of large
momenta (UV regime). This procedure is described in [5]. Following the proposed scheme, we
come to the result

Σ =
3g2Mµ2

8π2 lnη− 3g2Mµ2

8π2

∫ 1

0
dx ln

x2M2 + µ2(1− x)
M2 . (3.1)

Here η is an arbitrary number arising in TLRS. Note, that η > 1, but it is not obligatory infinite, so
we operate with a completely finite amplitude.

The nucleon mass as a function of the pion mass reads

M = M̄ +
3g2

AM̄
16F2

0 π2 µ2− 3g2
A

32F2
0 π

µ3 +O(µ4). (3.2)

The first non-analytic term in the relation (3.2) coincides with the one obtained in [6, 7].
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4. Eigenvalue equation

In order to show how one should proceed, we start from the following typical pion-nucleon
interaction Lagrangian

Lint =−1
2

gA

F0
Ψ̄γµ γ5 τb ∂µφ b Ψ− 1

4F2
0

Ψ̄γµ ~τ · ~φ × ∂µ~φ Ψ. (4.1)

The first term is the standard pseudo-vector pion-nucleon coupling, and the second one is the
leading contact ππNN interaction. Other contributions involving two pion fields arise from the
second order πN chiral perturbation theory Lagrangian [8]. They can be included in a very similar
way to the ππNN contact interaction.

Solving the eigenvalue equation (2.2) [9], we can represent the system of coupled equations
for the vertex functions in the two-body truncated Fock space by the diagrams of Fig. (3). It can be
written as

ū(p1)Γ1u(p) = ū(p1)(V1 +V2)u(p), (4.2)

ū(k1)Γ2u(p) = ū(k1)(V3 +V4)u(p). (4.3)

Figure 3: System of equations for the pion-nucleon vertex functions in the two-body Fock space truncation

Here p is the momentum of the physical fermion, p1 and k1 are the momenta of the constituent
fermion in the one-body and two-body Fock space truncation respectively. The graph denoted by
V4 corresponds to the second term in the interaction Lagrangian (4.1). The vertex functions Γ1

and Γ2 should be decomposed in independent spin structures. Using the explicit covariance of our
approach, we can write

ū(k1)Γ1u(p) = (m2−M2)a1ū(k1)u(p) (4.4)

ū(k1)Γ2u(p) = iū(k1)
(

(6k2− 6ωτ)b1(R⊥,x)+
m 6ω
ω · p

b2(R⊥,x)
)

γ5u(p) , (4.5)

where

τ =
s−M2

2ω · p
(4.6)
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is the off-shell energy, with s = (k1 +k2)2. R⊥ and x are usual light cone variables. The mass of the
physical bound state is denoted by M, while m is the mass of the constituent fermion. In the final
result, one should take the limit m → M. Generally speaking, b1(R⊥,x) and b2(R⊥,x) are scalar
functions depending on the dynamical variables (momenta). In the two-body truncation, with the
Lagrangian (4.1), they are just constants. The spin decomposition of the two-body component in
terms of independent spin structures is of course not unique. We choose here the most convenient
one.

Solving this system of equation we obtain the following solution (after the renormalization
procedure):

b1 = gA,

b2 = 0,

δm =−3g2
AM

2F2
0

(
1− f0

F2
0

Z
)

Z,

where f0 is a coupling constant corresponding to the ππNN contact interaction. f0 = 1 and we use
it here only to separate the contribution from the contact interaction. Z is a self-energy integral up
to multiplicative factor.

We also write down here the nucleon mass correction without contact interaction:

δm =
3g2

A

32F2
0

(
2Mµ2

π2 − µ3

π
− µ4 ln µ

M
π2M

+
µ4

π2M
+

µ5

8πM2

)
.

and with it:

δm =
3g2

A

32F2
0

(
2Mµ2

π2 − µ3

π
− µ4 ln µ

M
π2M

+
µ4

π2M
+

f0

4F2
0

Mµ4

π4 +
µ5

8πM2 −
f0

4F2
0

µ5

π3

)
.

One can see that contribution from the contact interaction is strongly suppressed.

5. Perspectives

We have outlined the main steps in the calculation of nucleon properties within light front chi-
ral effective field theory. Our formalism is based on the Fock expansion of the nucleon state vector,
projected on the light front. Using the properties of the explicitly covariant formulation of light-
front dynamics, and an adequate renormalization scheme when the Fock expansion is truncated,
we have calculated explicitly the spin components of the state vector in the two-body truncation.
We also demonstrated that the recently proposed Taylor-Lagrange regularization scheme is a very
powerful tool to operate with divergent integrals.

We have analyzed our results in terms of an expansion of the nucleon mass as a function of the
pion mass, in both cases, with and without the ππNN contact interaction. All these calculations
are in agreement with perturbative ones. These results show that we can apply our scheme to
three-particles calculations.
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