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1. Introduction

Itis a common knowledge that in QFT fields with the same quantum numbers caif tméxe
is an interaction between them. A canonical example is the mixing of the weakdhgpge U(1)
gauge filed and the neutral component of the SU(2) gauge field, whiehk gse to the electromag-
netic field and the field of the Z boson. In extensions of the SM additionakfiedd mix with the
fields of the SM, if they have the same quantum numbers.

In the present contribution we consider an extension of the SM basee &atidall-Sundrum
model with two branes stabilized by a bulk scalar fi¢ld]1, 2]. A charactefesiwire of this model
is the presence of a massive scalar radion field, which describes theflaos of the branes with
respect to each other. This field has the same quantum numbers as tla¢ Higgs field. Thus,
the radion field can mix with the Higgs field, if they are coupled.

Originally, a Higgs-radion coupling in the unstabilized Randall-Sundrum iraséeng due to
a curvature term on the brane was put forwardjin [3]. Then suchpliogand the resulting Higgs-
radion mixing in the case of the stabilized model were discussed in ppeitfjurtaking into
account the KK tower of higher scalar excitations. In what follows weudis@ model, where such
a coupling naturally arises due to a mechanism of spontaneous symmetkingrea the brane
involving the stabilizing scalar field. Unlike the mentioned papers our appra&es into account
the influence of the KK tower of higher scalar excitations on the parameténg dliggs-radion
mixing, which turns out to be of importance.

2. The modd

Let us denote the coordinates in five-dimensional spaceimeM, x St/Z, by {xM} =
{x* )y}, M =0,1,2,3,4, u = 0,1,2,3, the coordinate =y, —L <y < L parameterizing the
fifth dimension. It forms the orbifold, which is realized as the circle of theucnference P with
the pointsy and —y identified. Correspondingly, the metmign and the scalar fielg satisfy the
orbifold symmetry conditions

Iuv (X =Y) = Guv (X,Y), Gua(X, —Y) = —0ua(X,y), daa(X, —Y) = 9aa(X,y), (X, —Y) = @(X,y). (2.1)

The branes are located at the fixed points of the orbifpld 0 andy = L.
The action of the stabilized brane world model can be written as

L L
S= 2M3/d4x/7LdyR\/—7g —/d4x/7Ldy <;gMN0M(PdN(P+V((P)> V=g — (2.2
- /y_o V-(@)d*x + /y V0= 22(0) + L+ Lin(9,h)d*.

Here the signature of the metiggy is chosen to bé—,+,+,+,+), g = detgun, V(@) is a bulk
scalar field potential and; »(¢) are brane scalar field potentiats="det§,, with §,,, denoting
the metric induced on the branes. The Lagradign 1p is the SM Lagrangian without the Higgs
potential that is replaced by the interaction Lagrangian

Lint(@,h) = —A (Jh|*— E@)*. (2.3)
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The parametef in this formula has dimensiom/2 and will be specified later. We would like
to note here that one can also take interaction Lagrangjign (2.3)pfitnthe brackets. A similar
coupling of the Higgs field to the dilaton field is discussedjn [5].

The background solution for the metric and the scalar field, which presehe Poincaré
invariance in any four-dimensional subspgce cong, looks like

ds” = e VW, dxtdx’ +dy? = yan (y)dXMdxXY,  @(x,y) = @(y), (2.4)

Nuv denoting the flat Minkowski metric, whereas the background solution oHiggs field is

standard
0
h= ( v ) ) (2.5)
V2

all the other SM fields being equal to zero.

If one substitutes this ansatz into the equations of motion corresponding to ), one
gets a relation between the vacuum value of the Higgs field and the gahfethe field @ on the
braneay =L, @ =Vv?/(2¢), and arather complicated system of nonlinear differential equations
for functionsA(y), @(y) (' = d/dy):

+9d(y) + $2d(y—L) = —4A'¢/ + ¢ (2.6)
12M3(A)2 + 5(V - 3(¢)2) = 0
3@ 4V +18(y) +228(y— L)) = —2M3 (~3A" + 6(A)2)

To find an analytic solution to this system we use the results of papdis [lleblis consider
a special class of potentials, which can be represented as

2
Vo =5 (G ) ~ sameW(@:

It is easy to check that if we put

1aw
2de’
then equationg (3.6) are valid everywhere, except for the branesdém the equations of motion

be valid everywhere, one needs to finetune the brane potehiizle).
Let us takeN (@) to be

@ (y) = sign(y) Al(y) =sign(y) W(g), (2.7)

24Mm3

W = 24M3k — ug?, (2.8)
so thatV (@) is a quartic potential. Finetuned potentials on the branes can be chosédpws:fo
M=W(@)+BH@— @)% A2=-W(0)+BE(0— @) (2.9)

The parameters of the potenti&lsi, ¢ », 31 2, when made dimensionless by the fundamental five-
dimensional energy scale of the thedfly should be positive quantities of the ord®(1), i.e. there
should be no hierarchical difference in the parameters.

For such a choice of the potentials the solution of the equations of motion ledklaws [1]

oy) = @e M, Aly) =Kkly| + 48"5362“'”- (2.10)
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The interbrane distance is defined by the boundary conditions for thegfiatt is expressed in
terms of the parameters of the model by the relatiealn(¢/@)/u. Thus, we see that the brane
separation distance is stabilized.

It turns out that, with the functioA(y) given by [2.1), it is impossible to find exact solutions
for modes other than the zero one. For this reason in pfper [7] anxapaton ul < 1 was put
forward, which is rather general and physically interesting. Keepinganly the terms linear in
y, we get

Aly) =kly|, k=k— Zf\ﬂgu. (2.11)

Thus, in this approximation the metric of the stabilized model coincides with tha¢ oftstabilized
model, where a substitutidn— k was made. In this case the equations of the model can be solved
exactly, and the corresponding formulas for eigenfunctions and eijes/were discussed in detail
in [B].

Now the linearized theory is obtained by representing the metric, the scalaharHiggs
fields as

1 1
gMN(X,y):wN(yHWhMN(x,y), ¢(x,y):<p(y>+mf(x,y>, (2.12)

0
h(X) = <v+a(x)> (2.13)
V2

substituting this representation into actipn}2.2) and keeping the terms of thedseler inhy,
f ando. The resulting Lagrangian is the second variation Lagrangian of the sebitindel found
in [Pl supplemented by the terms

1 1 2AVE AE2
_z Hg — 22222 _ 2 _
[ 2(9“0(9 o 22/\ o +\/2M73f0 2M3f }6(y L). (2.14)

3. Higgs-radion mixing

It is not difficult to find that the part of the Lagrangian relevant to the digadion mixing is

[—2M13(322+A52)f2+ %fc—iﬂvzaz] d(y—L). (3.1)

First let us neglect the interaction of the fielidando. In this case we can, in the standard way,
find the mass spectrum and the wave functions of the excitations of the fitddy coincide with
those found in[]2], if one replaces thqBé — 522 + A &2, the second term coming from potential
(B-3). Then we expand the fiefdn these modes, substitute this expansion into the second variation
Lagrangian and integrate owerAs a result, we get a four-dimensional Lagrangian, in which there
is an interaction between the modes and the Higgs field coming from the ferfn‘h/\/m.

This term can be transformed as follows. In pagér [2] it was shown tleae txists the
gauge conditiony = exp(—2A)¢ f /(3M3), relating the fieldf to the scalar field) = exp(—2A)haa,
coming from the metric. Using the mode decompositiog(fy) and the boundary condition for
the mode wavefunctiogy(y) aty = L we have:

2

m_g/eZA| _g/| __g/(L) _ - Un
avE T @ YT YT Tug n;(zer?\fz—U)Usz

an(L) ().
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Thus, the interaction of the modews(x) with the Higgs field looks like

C3MP2AVE 2 u?
V2M3 n; (BZ+A&2—u)up

As we already mentioned is a free parameter that can be chosen arbitrarily. But it is more
interesting to construct it form the other parameters of the model, since virsg e spare a free
parameter. Here we will pursue this idea and take uz/\/2|\73, because this combination of the
model parameters has the right dimension and order of magnitude. In taithea®rmi £2 in the
denominator is negligibly small and can be dropped. Then we get the interhetimangian

n(L)@(X)0 ().

Aw 2
- L X)o(X).
B 2, Han(L@(9o(9
Let us denote -
—_— L) =as.

If we take the parameters of the model that correspond to the radionimas200GeV [[], we
approximately have? = 2A (30)2GeV?, i.e. a2/u? < 1, if the Higgs mass also does not exceed
200GeV. Since the boundary values of the wave functions of the modes deevéhsg we also
havea?/u? < 1. Thus, the mass matrix is

2/\\/2 a% a% 3121 ..

a% IJf O---0 -
M =

ar21 0O 0 --- IJ%..

It is not difficult to find that

o0}

det(,///—tl)_<2)\v2—t—z G >r|(u§—t).

n=1 I*lr% —t

Sincea?/u? < 1 we can expect that the eigenvalues of the matrix are closabanhd u2,
4
but the original masses are not the eigenvalues. Then, demiﬁiﬁgzﬁzzl%, we approximately
get for the Higgs mass

2_ 2024 2 aad
m :ZAVZ—AZ—HJ'— 1 1 -1
H 2 * (M2 —2AV2 4 A2)2

and for the radion mass

2_2AV2 4 A2 4at
me — 2y LoV a 1 1 —11.
L= HF 2 * (U2 — 2AV2 4 A2)2
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Thus, we see that jiZ > 2A v, this coupling always makes the radion heavier and the Higgs boson
lighter. If this is not the case, a special analysis is needed to find out leomakses alter.

The normalized eigenvectors of the matriK corresponding to these eigenvalues can be ap-
proximately found by the standard technique. We note that the eigenvettitrs scalar modes
with n > 2 are exactly orthogonal to the Higgs and the radion eigenvectors, #@mojonal to
each other up to terms of ord@f B <1, However, in the approximation under consideration the
Higgs and the radion elgenvectors are not orthogonal, which is not gaodhis reason we find a
new approximation for the radion mass that makes the eigenvectors ortiolyamely, denoting
P="Sno %;, we demand that

4
o

1+p+ =0,
P 2 =) (12— )

which ensures the orthogonality and gives for the radion mass

4
&y

(Hf —mg)(1+p)’

a value that does not differ much from the one found above. In wilatfe we will use this value
for the radion mass.

Since the matrix# is symmetric and real, it is diagonalized by an orthogonal transformation,
and the kinetic terms of the mass eigenstate fields are also diagonal. Thessigeastate fields
are expressed in terms of the original fields as

mi = pf +

o = Nyo — N

() 1 1 ;H
2

B = %(H% k>2
Hy

where

Nl

NI

N —<1+p+a£11> N —<1+p+a11>
; (Z—mg2) (W2—me2) -

The Yukawa couplings of the mass eigenstate fields to fermions look like

o &~
roy (NHCH-lePl ZZ )

and to the trace of the energy-momentum tensor

1 ° .
——=—=(Co6+ Y Cath | T,
\/32|v|3< 2. ) g
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where the constants are defined by

Co

afgu(L) < &
—Ny 17—N N aa(L
ul_mlzﬂ Hn;ur%gn()

a?
Ci= Ny 191 Nz2 & gL

C = gk(L), kZ 2.

Thus, we see again that though the interaction of the individual highéedxscalar states
may be weak, their cumulative effect on the Higgs-radion mixing may be wdisierdue to their
noticeable contributions to the values of parameférand p and lead to certain changes in the
collider phenomenology of the Higgs boson. A similar contribution of the direailybservable
tensor KK modes to scattering processes was discussfgd in [9], whexs $hewn that this contri-
bution is of the same order as that of the lowest modes and for this reasald $fe always taken
into account.
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