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This paper is devoted to the recent progress in the method of the lightcone coordinates in QCD.
We show that boundary gauge fields are crucial for the consistent and complete definition of the
theory. The result is important for the theory of high energy QCD evolution, since scattering
amplitudes are directly related to the lightcone Hamiltonian, whose complete structure is still
unclear on quantum level. Namely, there exists the problem to construct a quantum algebra of
observables in lightcone QCD beyond the perturbative regime. Careful analysis shows that we
have the problems with: canonical commutation relations, spatial invariance, and the boundary
degrees of freedom in the Hamiltonian.
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1. Introduction

There exists three main theoretical methods in high energy QCD: feynman diagrams (Lipa-
tov, Braun, Kovchegov), path integral (McLerran, Hatta, Balitski), quantum Hamiltonian (Kovner,
Lublinsky, Mueller). There are two typical coordinates in the Hamiltonian method: cartesian coor-
dinates, lightcone coordinates. In this work we study the method of lightcone coordinates The main
advantages of the lightcone method are: only operator algebra, no diagrams, life in the physical
Hilbert space directly related to observables, trivial vacuum, correctly removed gauge freedom, no
ghosts, no zero modes. Briefly, the primary physical motivation of our studied is: the evolution
of amplitudes of high energy scattering in QCD, JIMWLK/BK equations and NLO corrections,
powerful generalization of BFKL in the framework of evolution equations, unification of pomeron
loops and pomeron poles, multiple gluon production and other exclusive processes, a possible way
to the nonperturbative area of QCD.

However, a further progress is difficult due to subtle mathematical problems in the formalism,
which should be solved. It was shown recently that in lightcone QCD the boundary gauge fields at
x− = ±∞ are important part of the theory [1, 2, 3]. Since there is no natural boundary condition
in QCD, we must carefully treat boundary fields in the construction of the quantum theory. The
practical importance of the x−-boundaries was established in Ref. [2] by the considering of the
theory of high energy evolution. However, the theoretical input used in Ref. [2] is not fully verified
by a rigorous formalism. The construction of a such formalism had been started in Ref. [1], where
the classical lightcone QCD is considered, but the problem of quantization was not examined in
detail. Hoping to stimulate future researches, in this paper we analyze the currently known attempts
to quantize the theory and show that all they fail.

Refs. [3, 4] are the first known papers where the role of a field asymptotic was established.
However, in those papers only the antisymmetric boundary condition was used. Nowadays, we
know [1] that in QCD the boundary condition is neither antisymmetric nor symmetric. In Ref. [2]
the boundary fields are used in the theory of high energy scattering, since the method of wave func-
tion requires the precisely defined quantum Hamiltonian. The complete description of the lightcone
QCD at the classical level was given in Ref. [1]. Nevertheless, a quantization procedure of the ob-
tained system is not specified yet. The standard way of quantization is a construction of a Poisson
algebra. The key problem here is that a Poisson algebra of bulk fields is unable to treat boundary
fields. Finally, a Poisson bracket should be quantized and a representation of the quantized algebra
in a Hilbert space should be found. For a theory without boundary fields this procedure is simple
enough. However, even for a slightly more complex theory, the procedure may become unsolvable.
In this paper we show that in lightcone QCD a Poisson algebra cannot be directly constructed, since
the Hamiltonian has both the explicit and the implicit boundary contributions. Hence, we have to
find a workaround that can help to construct the algebra. We analyze all three known choices of
variables, which were used to construct the required Poisson algebra. The result is negative, the
standard method of quantization cannot be applied.

This paper is organized as follows. In Sec. 2, we briefly review lightcone QCD at the classical
level. In Sec. 3, we analyze the available choices of coordinates with aim to construct a Poisson
algebra and to quantize it. Section 4 contains our conclusions.
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2. Lightcone QCD at the classical level

Let us briefly review the results of Ref. [1]. The Lagrangian of QCD is

L =
1
2

F+−
2 +F+iF−i−

1
4

Fi jF i j +gAµJµ (2.1)

where Jµ is a current of matter fields or an external current. To remove unphysical degrees of
freedom we apply the symplectic Faddeev-Jackiw method [6]. This method allows to do the job
without a construction of a Poisson algebra, which has a problem with boundary degrees of free-
dom.

In the process of symplectic reduction, since there is no term ∂+A+ in the Lagrangian, the
variables A+ are automatically removed from the scene. The main gauge fixing is

A− = 0 (2.2)

The necessity to reduce the Hamiltonian on the phase space without A+ gives the complete set of
Gauss’ constraints.

∂−π
−
a +∂−∂iAa

i −g fabc∂−Ab
i Ac

i +gJ+
a = 0 (2.3)

π
−
a (±∞,~x) = 0 (2.4)

where the last constraint comes from the boundary part of the variation δH over δA+.
After the removal of unphysical degrees of freedom, we obtain the following classical dynam-

ical system. The phase space of the theory is the space of fields Aa
i (x

−,~x) obeying the boundary
condition

Aa
i (−∞,~x) = 0 (2.5)

This condition was selected in Ref. [1] as a most simple way to fix the residual gauge freedom.
The linear space of fields Aa

i is endowed by the fundamental symplectic form ω

ω =
∫

∂−dAa
i ∧dAa

i (2.6)

ω(A,B) =
∫

(∂−Aa
i Ba

i −Aa
i ∂−Ba

i )dx− (2.7)

The Hamiltonian density is given by

H[Ai] =
1
2
(π−a )2 +

1
4

Fa
i j[Ai]F i j

a [Ai]−gAa
i Ji

a (2.8)

The momentum π−a (x−,~x) is determined by the equations (2.3) and (2.4), which is the Gauss’
constraints. At the boundary x− = +∞ we have the constraint

Aa
i (+∞,~x) = γ

a
i (~x) (2.9)

∂iγ
a
i (~x) =

+∞∫
−∞

(
g fabc∂−Ab

i Ac
i −gJ+

a

)
dx− (2.10)
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which is the consequence of the Gauss’ constraints (2.3) and (2.4). We also add the following
constraint

∂iγ
a
j −∂ jγ

a
i +g fabcγ

b
i γ

c
j = 0 (2.11)

which is the finite energy condition for infinity length of x−. This condition is introduced manually
to complete fix γa

i . Formally, the constraint (2.11) does not arise in the symplectic Faddeev-Jackiw
algorithm. So, it must be used carefully, since in a quantum theory energy levels have a sense only
relatively to a ground state. If we remove the constraint (2.11), then it will be possible to replace

γ
a
i → γ

a
i + ε

i j
∂ jψ

a (2.12)

where ψa(~x) is an arbitrary function. Non zero value of ∂iψ
a leads to infinity (volume-divergent)

energy in the Hamiltonian (2.8). Note, that the transformation (2.12) does not violate the constraint
(2.10). So, in this case the variable ψ must be considered as a boundary degree of freedom.

3. The problem of quantization

Initially, we have a symplectic system. Note, that in the classical mechanic the symplectic
form d p∧dq is a natural part of the construction of the Hamiltonian formalism. Next, the Poisson
bracket {q, p}= 1 is obtained via the implicit inversion on the symplectic form. Usually, this step
is not emphasized because it is trivial. However, subtleties may emerge in an infinite-dimensional
field theory and in a constrained system.

In a quantum theory, a role of Poisson algebra is much more important because a quantum
commutator is a quantized version of the classical brackets. The mainstream method of quantiza-
tion is

1. To construct a Poisson algebra and a Hamiltonian. This algebra will be used as an algebra of
classical observables.

2. To fix a gauge invariance and to remove constraints via a construction of the Dirac bracket.

3. To quantize the Poisson algebra. To construct a Hilbert space and canonical commutation
relations.

4. To resolve possible ordering ambiguities in quantum-classical operator correspondence.

The second step we perform within symplectic system. To make the first step we analyze the three
variables with aim to generate well defined and quantizable Poisson algebra.

3.1 Natural variables Aa
i

To construct a Poisson algebra from our symplectic dynamical system we have to invert the
symplectic form (2.7) and to construct a Poisson brackets. Let us try to invert the symplectic form
in the linear space of fields obeying the boundary condition Aa

i (−∞,~x) = 0. We have to find a linear
operator P(x− y) such that

ω

(
A,

∫
P(x− y)B(y)dy

)
=

∫
ABdx (3.1)
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for any A and B obeying (2.5). Note that we have omit the color and transverse indexes. Then, the
corresponding Poisson brackets is

{F,G}=
∫

δF [A]
δA(x)

P(x− y)
δG[A]
δA(y)

dxdy (3.2)

It is easy to check that for the boundary condition (2.5) there exists only one such operator

P(x) =
1
2

θ(−x) (3.3)

where θ(x) is the standard step function. The result (3.3) has a fatal problem: the kernel P(x) is not
antisymmetric. This obstruction is expected specific feature of a infinite-dimensional theory with
boundaries. Hence, a naive Poisson brackets does not exist and the variables Aa

i cannot generate
a Poisson algebra of observables. In principle, this way is not fully closed and it may be exist a
subtle method of a construction of algebra.

3.2 Antisymmetric variables Ãa
i

From the wide practice of lightcone field theories we know that the antisymmetric conditions
induces a well-defined Poisson algebra. The symplectic form ω is invertible and the corresponding
inverse kernel is

P(x) =−1
4

ε(x) (3.4)

where ε(x) is the sign function. However, the fatal problem here is that the lightcone QCD Hamil-
tonian has an implicit dependence over the boundary field γi. To extract it, we calculate an infinites-
imal variation δ H̃ over a variation of the canonical variables δ Ã. It is shown in Ref. [10] that the
boundary contribution to the variation δ H̃ is

δ H̃
∣∣
boundary =−

∫
x−,~x

g
4

fabcπ
−
a δγ

b
i γ

c
i ∼ O(g3) (3.5)

The boundary variation cannot be converted to a bulk one, since there exists an obstruction that
the color-space 1-form fabcdγbγc is not exact and not closed, except the case of a one-dimensional
color space. So, the Hamiltonian is not an element of the bulk Poisson algebra and the standard
method of quantization can not be applied.

3.3 Boundaryless variables ca
i

The another attempt to separate the boundary contribution is proposed in Ref. [2]. The idea is
to express a boundary contribution to a bulk one. Let us define new fundamental variables ca

i with
zero boundary conditions as

Aa
i (x

−,~x) = ca
i (x

−,~x)+ γ
a
i (~x)ϕ(x−) (3.6)

where ϕ(x−) is an arbitrary fixed global function such that

ϕ(−∞) = 0
ϕ(+∞) = 1

(3.7)
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It is helpful to imagine ϕ(x−) as a typical smooth monotonic kink-like function. So, we have
ca

i (±∞) = 0. This gives the new Hamiltonian H[c], which variation δH[c] is well defined [10].
The first problem of this method is that the fundamental brackets {c(x1),c(x2)} becomes very

nonlinear. Although we have no methods how to quantize this nonlinear brackets, in principle,
we can hope that a solution exist. The usage of variables ca

i has the one more problem. Since
the function ϕ(x−) explicitly depends on x−, it breaks the longitudinal spatial invariance of the
Hamiltonian. This problem is most serious because there are no preferred points in the initial
formulation of the theory.

4. Discussion

We have analyzed the three possible variables: A, Ã, and c. All they give the fatal obstructions
that do not allow to quantize the theory in the standard Poisson method. This motivates us to find
a different quantization scheme that is not based on a bulk Poisson algebra. In Refs. [7, 8] it was
proposed a generalization of Poisson brackets to a case with boundaries. It is possible to construct
a consistent Poisson bracket that includes the full boundary information. For boundaryless func-
tionals a such bracket coincides with the standard Poisson brackets, but for functionals, involving
boundaries, the brackets are defined in a distinct way. Although this generalized bracket seem
challenging, there are no hopes to quantize the such brackets in a trivial way. Moreover, it was
shown that this brackets are not unique [8, 9]. It is not clear what brackets naturally corresponds to
a symplectic structure obtained from a Lagrangian. The task becomes more complex if we impose
the constraint Ã(±∞) =±γ/2 that must be treated as a second class constriant.

Another quantization method, which we did not touch before, is an introduction of unphysical
degrees of freedom into the Hilbert space of the quantum theory. Sometimes, such methods leads
to unitary ghosts and Faddeev-Popov ghosts in a Hilbert space. A selection of physical states is
given by special operator conditions, whose matrix elements gives a system of linear equations.
The key problem in this way is that to relate a such enlarged Hilbert space to the real physical
states observed in high energy scattering. Even after an explicit removal of ghost states, a physical
interpretation is still not clear.

Since we did not assume any perturbative approximation or expansion, our calculation is valid
for any value of the coupling constant g. Indeed, we have shown that near g≈ 0 the theory can be
quantized well. This means that nonperturbative aspects of lightcone QCD should arise somewhere.
Recall that any lightcone theory has the trivial vacuum state. So, in a general case, potential troubles
are moved to a very complicated Hamiltonian and to a quantization procedure. We just conjecture
that the observed obstructions is not technical but a genuine feature of the lightcone theory. It is
suitable to remind here about the lightcone quantization of the bosonic string theory where the
critical dimension is given by a cumbersome check of the commutation relations of the Lorentz
group. In lightcone QCD we also see the drastic growing of complexity when we increase the
dimension of space-time from three to four. Namely, it was argued in Ref. [1] that in three space-
time dimensions the residual gauge freedom can be used to make the antisymmetric boundary
condition for the field Ai and the Hamiltonian contains a finite number of terms.

Making the final conclusion, we assert that the theory of lightcone QCD has the following
features:
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• The boundary field γi at x− = ∞ plays the important role. It affects on physical scattering
amplitudes beyond the leading order.

• The symplectic method is most useful in this case. The structure of the classical phase space
is linear symplectic space.

• For 4D space-time and non-Abelian gauge group the Hamiltonian has infinite number of
terms and infinite power over the coupling constant g.

• The quantum structure of lightcone QCD is still not clear. Beyond leader order the theory
cannot be directly quantized. The careful analysis shows that a Poisson formulation has
the problems with: canonical commutation relations, spatial invariance, and the boundary
degrees of freedom in the Hamiltonian.
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