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The local-duality formulation of QCD sum rules allows for the prediction of hadronic form factors

without knowledge of the subtle details of their structure.With the aid of this formalism, we take a

fresh look at the behaviours of the charged-pionelastic form factor and of the form factors entering

in the transitions of the ground-state neutral unflavoured pseudoscalar mesonsπ0,η ,η ′ to one real

and one virtual photon within a broad range of momentum transfersQ2. The uncertainties induced

by the approximations inherent to this local-duality approach are estimated by studying, in parallel

to QCD, quantum-mechanical potential models, where the exact form factors, obtained by solving

the Schrödinger equation, may be compared with the corresponding local-duality sum-rule results.

ForQ2 ≥5–6 GeV2, we judge the predictions of the simplest local-duality model to be reliable and

expect their accuracy to improve very fast with increasingQ2. The large-Q2 prediction for the pion

elastic form factor should be approached already at moderate momentum transferQ2 ≈ 4–8 GeV2;

large deviations from its local-duality behaviour forQ2 = 20–50 GeV2, predicted by some hadron-

structure models, seem rather unlikely. The(η ,η ′)→ γ γ∗ form factors deduced from the simplest

local-duality approach exhibit excellent agreement with experiment. In startling contrast, BABAR

measurements of theπ0→ γ γ∗ form factor imply local-duality violations which even risewith Q2.
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1. Introduction: Motivation and Incentive for Reconsidering a Long-Standing Issue

QCD sum rulesaim to predict the characteristic features of ground-statehadrons (their masses,
decay constants, form factors, etc.) from the underlying quantum field theory of strong interactions,
quantum chromodynamics (QCD), by evaluating matrix elements of suitably chosen operators both
on the level of hadrons and on the level of the QCD degrees of freedom quarks and gluons. Wilson’s
operator product expansionallows for the conversion of thesenonlocaloperators into series of local
operators. By this process the QCD-level matrix elements receive both perturbative contributions as
well as non-perturbative contributions involving universal quantities called vacuum condensates. In
order tosuppressthe contributions of hadronic excitations and continuum and toremovesubtraction
terms,Borel transformationsto new variables, dubbed as the Borel mass parameters, are performed.
Representing the perturbative contributions to our QCD-level matrix elements in form of dispersion
integrals over corresponding spectral densities allows usto bypass our ignorance about higher states
by invoking the concept ofquark–hadron duality: beyond someeffective thresholdsthe perturbative
QCD contributions and the expressions of hadron excitations and continuum are assumed to cancel.
The outcome of these steps are sum rules relating QCD parameters to observable hadron properties.
In the limit of infinitely largeBorel mass parameters, all non-perturbative QCD contributions vanish
and we are left with what is known as local-duality (LD) form of QCD sum rules, rendering possible
to derive features of ground-state hadrons from perturbative QCD and our effective-threshold ideas.

Recently, we applied the LD sum-rule formalism to reanalyzeboth the elastic form factor of the
pion [1] and the form factor that describes the transitionP→ γ γ∗ of some light neutral pseudoscalar
mesonP= π0,η ,η ′ to a real photonγ and a virtual photonγ∗ [2]. One particularly attractive feature
of the LD sum-rule approach is the possibility to extract predictions for hadron form factors without
knowledge of all subtle details of the structure of the hadronic bound states and to consider different
hadrons on an equal footing. Here, we take a retrospective look from bird’s eye view at our findings:
After recalling, for the example of the pion, the rather well-known basic features of the LD sum-rule
approach to pseudoscalar-meson form factors, in order to get an idea (or even rough estimate) of the
accuracy to be expected for real-life mesons described by QCD sum rules we make a brief and in the
meanwhile well-established sidestep to their quantum-mechanical analogues as a means to examine
the uncertainties induced by modeling the impact of higher hadronic states in a rather naïve fashion.
Then, equipped with sufficient confidence in the reliabilityof the adopted LD approximation for the
effective thresholds, we discuss, in turn, theπ elastic and

(

π0,η ,η ′)→ γ γ∗ transition form factors.

2. Dispersive Three-Point QCD Sum Rules in the Limit of Local Duality [3]

The basic objects exploited here for the investigation of the behaviour of form factorsF(Q2) as
functions of the involved momentum transfers squared,Q2 =−q2 ≥ 0, arethree-point functions, the
vacuum correlator of one vector and two axialvector currents, withdouble spectral density∆pert, for
the elastic form factorFπ(Q2) and the vacuum correlator of one axialvector and two vector currents,
with single spectral densityσpert, for the transition form factorFπγ(Q2), satisfying the LD sum rules

Fπ(Q2) =
1
f 2
π

seff(Q2)
∫

0

ds1

seff(Q2)
∫

0

ds2 ∆pert(s1,s2,Q
2) , Fπγ(Q

2) =
1
fπ

s̄eff(Q2)
∫

0

dsσpert(s,Q
2) . (2.1)
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Here, fπ is the charged-pion decay constant:fπ = 130 MeV. Now all details of the non-perturbative
dynamics are encoded in the effective thresholdsseff(Q2) ands̄eff(Q2) that enter as upper endpoints.

We take the liberty of introducing the notion of anequivalent effective threshold, defined by the
requirement that the use of this quantity as effective threshold in the appropriate dispersive sum rule
— such as the LD representatives of Eq. (2.1) — reproduces forthe form factor under consideration
either given experimental data or a particular theoreticalprediction exactly. With such powerful tool
at our disposal, we are able to quantify our observations andmake our conclusions much more clear.

Within perturbation theory, the spectral densities∆pert(s1,s2,Q2) andσpert(s,Q2) are derived as
series expansions in powers of the strong couplingαs by evaluating the relevant Feynman diagrams:

∆pert(s1,s2,Q
2) = ∆(0)

pert(s1,s2,Q
2)+ αs(Q

2)∆(1)
pert(s1,s2,Q

2)+O(α2
s ) ,

σpert(s,Q
2) = σ (0)

pert(s,Q
2)+ αs(Q

2)σ (1)
pert(s,Q

2)+O(α2
s ) . (2.2)

As far as their aspects relevant for our present purposes areconcerned, the theoretical status of these
spectral densities may be summarized as follows. In the double spectral density∆pert(s1,s2,Q2), for

fixeds1,2 and large momentum transfersQ2, the one-loop contribution∆(0)
pert(s1,s2,Q2) vanishes like

∆(0)
pert(s1,s2,Q2) ∝ 1/Q4 and the two-loop contribution∆(1)

pert(s1,s2,Q2) approaches the behaviour [4]

∆(1)
pert(s1,s2,Q

2) −−−−→
Q2→∞

1
2π3 Q2 ;

in other words, in the limitQ2 →∞ the lowest-order term decays faster than the next-to-lowest term.
In the single spectral densityσpert(s,Q2), the two-loop correctionσ (1)

pert(s,Q
2) has been proven [5] to

vanish identically:σ (1)
pert(s,Q

2)≡ 0. Higher-order radiative corrections have not yet been calculated.
With the required spectral densities available at least up to some order of perturbation theory, as

soon as the dependencies of the effective thresholdsseff(Q2) ands̄eff(Q2) on the momentum transfer
Q2 have been found, the form factors of interest can be easily extracted from the LD sum rules (2.1).
Factorization theorems for hard form factors [6], allowingfor separation of the dynamics into short-
and long-distance contributions, establish the asymptotic behaviour of the form factors for largeQ2:

Q2Fπ(Q2) −−−−→
Q2→∞

8π αs(Q
2) f 2

π , Q2Fπγ (Q
2) −−−−→

Q2→∞

√
2 fπ .

The sum rules (2.1) with the spectral functions (2.2) reproduce, atO(α2
s ) accuracy, this behaviour if

lim
Q2→∞

seff(Q
2) = lim

Q2→∞
s̄eff(Q

2) = 4π2 f 2
π ≈ 0.671 GeV2 (2.3)

holds. The remaining task is to determine the behaviour of the effective thresholds at finite values of
Q2. Unfortunately, as analyzed in detail in Refs. [7], the formulation of a reliable criterion for fixing
a threshold poses a somewhat delicate problem as, for finiteQ2, the effective thresholdsseff(Q2) and
s̄eff(Q2) cannot be assumed to be equal to their asymptotes (2.3); rather, they will depend onQ2 and,
generally, differ from each other [8]. A very simple idea is to assume that the use of their asymptotic
values provides a meaningful approximation also at moderate but not too small momentum transfer:
seff(Q2) = s̄eff(Q2)= 4π2 f 2

π . This choice defines a straightforward albeit rather naïve LDmodel [3].
It goes without saying that such crude approximations to theeffective thresholds may be well suited
to reproduce the overall trend but can hardly account for anysubtle detail of confinement dynamics.
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3. Exact and Local-Duality Form Factors in Quantum-Mechanical Potential Models

The (quantum-field-theoretic) LD sum-rule approach to bound-state form factors may be easily
carried over to quantum mechanics. Within the latter framework, the features of any bound state can
be obtained with, in principle, arbitrarily high precisionfrom the related solution of the Schrödinger
equation for the Hamiltonian governing the dynamics of the system under consideration. Therefore,
quantum-mechanical potential models constitute an ideal test ground for estimating the significance
of LD models that employ for the effective thresholds entering in the adopted sum rules the constant
limits fixed by some asymptotic behaviour at experimentallyaccessible lower momentum transfers.
For this very reason, we examine quantum-mechanical potential models defined by HamiltoniansH
which must incorporate, for the study of the elastic form factor, confiningandCoulomb interactions
(η = 1) but, for the investigation of the transition form factor,merely confining interactions (η = 0):

H =
k2

2m
+Vconf(r)−η

α
r

, Vconf(r) = σn (mr)n , r ≡ |x| , n = 2,1,1/2 .

We ensure a realistic description of mesons by adopting for our numerical analysis parameter values
appropriate for hadron physics:m= 0.175 GeV for the reduced mass of light constituent quarks and
α = 0.3 for the coupling strengthα of the Coulomb interaction term. For the confining interactions,
we consider several power-law potential shapesVconf(r), adjusting the associated coupling strengths
σn such that in each case the Schrödinger equation predicts thesame valueψ(0) = 0.078 GeV3/2 for
the ground-state wave functionψ at the origin:σ2 = 0.71 GeV, σ1 = 0.96 GeV andσ1/2 = 1.4 GeV.

Then, the size of the lowest-lying bound state is about 1 fm and thus of typical hadronic dimensions.
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Figure 1: Exact quantum-mechanical effective thresholds for elastic (left) and transition (right) form factors.

With the numerically exact solution of the Schrödinger equation at hand, we are in a position to
confront the form factors arising thereof with corresponding predictions of the quantum-mechanical
counterparts of the LD QCD sum rules (2.1), which involve effective thresholdskeff(Q) andk̄eff(Q),

respectively. As in the QCD case, the asymptotic behaviour of the elastic and transition form factors
in the limit of infinitely large momentum transferQmay be derived from factorization theorems [6].
In terms of the ground-state decay constantRg ≡ |ψ(0)|2, this asymptotic behaviour is guaranteed if
the effective thresholds fulfillkeff(Q→∞)= k̄eff(Q→∞)= (6π2 Rg)

1/3. Figure 1 shows that the LD
modelkeff(Q) = k̄eff(Q) = (6π2 Rg)

1/3 approximates independently of the confining potential in use
the exact effective thresholds yielding the true form factors with improving accuracy, starting for the
elastic form factor atQ2 ≈ 5–8 GeV2 and for the transition form factor at some even lowerQ2 value.
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4. The Pion Elastic Form Factor [1]

The pion belongs, beyond doubt, to the best-studied mesons.Nevertheless, the one or the other
of its most important properties still cannot seriously be claimed to be sufficiently well understood.1

Figure 2 displays a snapshot of the present status of the pion’s electromagnetic or elastic form factor
Fπ(Q2) from both the experimental [9] and the theoretical [1, 10] points of view. Obviously, there is
ample room for controversy, but no consensus onFπ(Q2) for momentum transfersQ2≈ 5–50 GeV2.
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Figure 2: Pion elastic form factorFπ(Q2): experimental data [9] and some recent theoretical findings[1, 10].

In order to cast some light onto these disquieting puzzles, Figure 3 depicts our translation of the
findings summarized in Fig. 2 to equivalent effective thresholdsseff(Q2) calculated back from either
experimental data or theoretical predictions forFπ(Q2): the exact effective threshold extracted from
the data is compatible with the assumption that the LD limit is approached at rather lowQ2 whereas,
contrary to quantum physics, theory seems not to care about local duality, at least forQ2≤ 20 GeV2.
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Figure 3: Parametrization of the effective thresholdseff(Q2) by an improved LD model [1] (labelled BLM)
vs. exact behaviour (red) of the equivalent effective threshold extracted from experimental data [9] (left), and
equivalent effective thresholds corresponding to the theoretical results forFπ [1, 10] depicted in Fig. 2 (right).

Rather precise measurements may be expected from JLab afterthe 12 GeV upgrade of CEBAF.

1Of course, whenever some problem in the treatment of any of the ground-state pseudoscalar mesons is encountered,
as a kind of automatic reflex-like response one may be temptedto blame within QCD the pseudo-Goldstone-boson nature
of the particle for preventing us from acquiring a satisfactory understanding. Nevertheless, all comprehensive approaches
should be expected to be able to deal with this sort of “inconvenience” and to ultimately incorporate such crucial features.
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5. The (π0,η,η ′) → γ γ∗ Transition Form Factors [2]

In order to consolidate our concerns and to substantiate ourconfusions, we discuss theη andη ′

transitions(η ,η ′)→ γ γ∗ before turning to the controversial issue of the pion’s transitionπ0 → γ γ∗.

5.1 Form Factors for the Transitions (η ,η ′) → γ γ∗

The two isoscalar mesonsη andη ′, having the sameJPC quantum numbers, are mixtures ofall
light quarks. In the flavour basis, the mixing of the non-strange and strange contributions is given by

|η〉 =

∣

∣

∣

∣

ūu+ d̄d√
2

〉

cosφ −|s̄s〉sinφ , |η ′〉 =

∣

∣

∣

∣

ūu+ d̄d√
2

〉

sinφ + |s̄s〉cosφ ,

with mixing angleφ ≈ 39.3◦; see,e.g., Refs. [11, 12]. The form factors reflect this flavour structure:

Fηγ(Q
2) =

5Fnγ (Q2)

3
√

2
cosφ − Fsγ(Q2)

3
sinφ , Fη ′γ(Q

2) =
5Fnγ(Q2)

3
√

2
sinφ +

Fsγ(Q2)

3
cosφ .

Here, the non-strange and(s̄s) componentsFnγ(Q2) andFsγ(Q2) of the LD form factors are given by

Fnγ(Q
2) =

1
fn

s̄(n)
eff (Q

2)
∫

0

dsσ (n)
pert(s,Q

2) , Fsγ(Q
2) =

1
fs

s̄(s)
eff(Q

2)
∫

4m2
s

dsσ (s)
pert(s,Q

2) ,

whereσ (n)
pert andσ (s)

pert label the single spectral densityσpert of Eq. (2.1) with the corresponding quark,
n= u,d ors, propagating in the loop; each component utilizes an effective threshold of its own [12]:

s̄(n)
eff = 4π2 f 2

n , fn ≈ 1.07 fπ , s̄(s)
eff = 4π2 f 2

s , fs ≈ 1.36 fπ .

In our numerical calculations, we adoptmu = md = 0 andms= 100 MeV for the light-quark masses.
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Figure 4: Transition form factorsF(η,η ′)γ(Q
2): for η andη ′ the LD model fits the experimental data [13, 14].

According to all our experience gained by in-depth investigations of the LD sum-rule approach
within quantum mechanics, this straightforward but admittedly not too sophisticated LD framework
may not perform really well for low momentum transfersQ2, where, as a brief look at Fig. 3 reveals,
the exact effective threshold is below the constant LD effective threshold inferred from the large-Q2

form-factor behaviour. However, for larger momentum transfer the simple quantum-mechanical LD
model entails accurate predictions for form factors. Figure 4 shows that, for bothη andη ′ transition
form factors, we find the anticipated overall agreement between the LD predictions and experiment.
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5.2 Form Factor for the Transition π0 → γ γ∗

In view of the undeniable successes of the LD model in the caseof theπ elastic form factor and
of theη andη ′ transition form factors, its failure in the case of theπ0 transition form factorFπγ (Q2)

is all the more surprising. Figure 5 displays how markedly the LD prediction forFπγ (Q2) misses the
BABAR data [15]. This becomes even more manifest by the linear risewith Q2 of the corresponding
equivalent effective threshold ¯seff(Q2), which, at least in the region up toQ2 ≈ 40 GeV2, exhibits no
tendency of approaching its LD limit (2.3). This intriguingpuzzle still awaits a compelling solution.
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Figure 5: Form factorFπγ(Q2) for the pion transitionπ0 → γ γ∗: some experimental data [13, 15], at least the
BABAR data (red dots), apparently diverge from our LD prediction;this unexpected behaviour is reflected by
the equivalent effective threshold ¯seff(Q2) exhibiting a linear rise withQ2 instead of approaching its LD limit.

6. Summary: Findings and Conclusions

By reconsidering the dependence of the pion elastic [1] andπ0,η ,η ′ transition [2] form factors
on the momentum transferQ2 using QCD sum rules in LD limit, we gain highly interesting insights:

Pion elastic form factor: Transferring the outcomes of our quantum-mechanical analysis to QCD,
we expect the simple LD model to be applicable with increasing accuracy forQ2 ≥ 4–8 GeV2

irrespective of the adopted confining interactions. For realistic confining interactions, this LD
model reproduces the elastic form factor forQ2 ≥ 20–30 GeV2 with high precision. Accurate
measurements of this form factor at smallQ2 suggest that assuming for the effective threshold
its LD limit already at rather lowQ2 = 5–6 GeV2 may constitute a reasonable approximation.
Hence, large deviations from this LD limit atQ2 = 20–50 GeV2 must be regarded as unlikely.

Transition form factors for π0,η ,η ′: Our observations in quantum mechanics can be understood
as hints that, for bound states of typical hadron extensions, the LD approach should work well
for Q2 larger than a few GeV2, and it indeed does for theη → γ γ∗ andη ′ → γ γ∗ form factors.
However, a recent measurement of the form factor for the neutral-pion transitionπ0 → γ γ∗ by
the BABAR experiment [15] implies a violation of local duality which even grows withQ2, at
least up toQ2 as high as 40 GeV2. Within the LD sum-rule formalism (2.1), such behaviour of
a transition form factor cannot be accommodated by aconstantequivalent effective threshold
but must be described by a linearQ2-dependence of ¯seff(Q2); a convincing explanation of this
has yet to be found. This conclusion enjoys full agreement with the findings of Refs. [16, 17].
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