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The local-duality formulation of QCD sum rules allows foetprediction of hadronic form factors
without knowledge of the subtle details of their structiiéth the aid of this formalism, we take a
fresh look at the behaviours of the charged-pion elastimflactor and of the form factors entering
in the transitions of the ground-state neutral unflavoussiposcalar mesoms$, n, n’ to one real
and one virtual photon within a broad range of momentum feas§?. The uncertainties induced
by the approximations inherent to this local-duality agmioare estimated by studying, in parallel
to QCD, quantum-mechanical potential models, where thetézem factors, obtained by solving
the Schrodinger equation, may be compared with the cornelipglocal-duality sum-rule results.
ForQ? > 5-6 Ge\#, we judge the predictions of the simplest local-duality maolee reliable and
expect their accuracy to improve very fast with increa§igThe large©? prediction for the pion
elastic form factor should be approached already at moglaramentum transfé? ~ 4-8 Ge\/;
large deviations from its local-duality behaviour 9 = 20-50 GeV?, predicted by some hadron-
structure models, seem rather unlikely. Then’) — yy* form factors deduced from the simplest
local-duality approach exhibit excellent agreement withariment. In startling contrast AHBAR
measurements of th@ — yy* form factor imply local-duality violations which even risgth Q2.
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1. Introduction: Motivation and Incentive for Reconsidering a L ong-Standing I ssue

QCD sum rulesiim to predict the characteristic features of ground-dtatirons (their masses,
decay constants, form factors, etc.) from the underlyirengum field theory of strong interactions,
quantum chromodynamics (QCD), by evaluating matrix eldsehsuitably chosen operators both
on the level of hadrons and on the level of the QCD degreegefli-m quarks and gluons. Wilson’s
operator product expansicailows for the conversion of thes®nlocaloperators into series of local
operators. By this process the QCD-level matrix elememsive both perturbative contributions as
well as non-perturbative contributions involving univerguantities called vacuum condensates. In
order tosuppresshe contributions of hadronic excitations and continuumh amemovesubtraction
terms,Borel transformationso new variables, dubbed as the Borel mass parameters,réoeped.
Representing the perturbative contributions to our QGEImatrix elements in form of dispersion
integrals over corresponding spectral densities allovis bgpass our ignorance about higher states
by invoking the concept ajuark—hadron dualitybeyond someffective thresholdie perturbative
QCD contributions and the expressions of hadron excitatamd continuum are assumed to cancel.
The outcome of these steps are sum rules relating QCD pagesnietobservable hadron properties.
In the limit of infinitely largeBorel mass parameters, all non-perturbative QCD contdbstvanish
and we are left with what is known as local-duality (LD) forff@CD sum rules, rendering possible
to derive features of ground-state hadrons from pertud&ICD and our effective-threshold ideas.

Recently, we applied the LD sum-rule formalism to reanalyaih the elastic form factor of the
pion [1] and the form factor that describes the transiien yy* of some light neutral pseudoscalar
mesorP = 1°, 1, n’ to a real photory and a virtual photoly* [2]. One particularly attractive feature
of the LD sum-rule approach is the possibility to extractorgons for hadron form factors without
knowledge of all subtle details of the structure of the hadtrdbound states and to consider different
hadrons on an equal footing. Here, we take a retrospectlkeffom bird’s eye view at our findings:
After recalling, for the example of the pion, the rather wealbwn basic features of the LD sum-rule
approach to pseudoscalar-meson form factors, in ordett tmgdea (or even rough estimate) of the
accuracy to be expected for real-life mesons described dy 0 rules we make a brief and in the
meanwhile well-established sidestep to their quantumhargical analogues as a means to examine
the uncertainties induced by modeling the impact of higlagirbnic states in a rather naive fashion.
Then, equipped with sufficient confidence in the reliabitityhe adopted LD approximation for the
effective thresholds, we discuss, in turn, fhelastic anc( , r;,r;’) — yy* transition form factors.

2. Dispersive Three-Point QCD Sum Rulesin the Limit of Local Duality [3]

The basic objects exploited here for the investigation eftbhaviour of form factors (Q?) as
functions of the involved momentum transfers squa@¥d= —q? > 0, arethree-point functionghe
vacuum correlator of one vector and two axialvector cugenithdouble spectral densitper, for
the elastic form factoF,(Q?) and the vacuum correlator of one axialvector and two vecioeats,
with single spectral densitgpen, for the transition form factoF,(Q?), satisfying the LD sum rules

1 Sert(Q?) sei(QF) 1 Sr(Q)
Q)= [ds [dubpe9.Q) . Fn(@) =1 [dson(s@).  @D)
T o 0 0
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Here, f,; is the charged-pion decay constafit:= 130 MeV. Now all details of the non-perturbative
dynamics are encoded in the effective thresheldéQ?) andse(Q?) that enter as upper endpoints.
We take the liberty of introducing the notion of aquivalent effective threshqldefined by the
requirement that the use of this quantity as effective tiolkekin the appropriate dispersive sum rule
— such as the LD representatives of Eq. (2.1) — reproducdbédiorm factor under consideration
either given experimental data or a particular theorepoadiiction exactly. With such powerful tool
at our disposal, we are able to quantify our observationsyvaia our conclusions much more clear.
Within perturbation theory, the spectral densitgs(s1, S, Q?) andoper(s, Q%) are derived as
series expansions in powers of the strong coupdigigy evaluating the relevant Feynman diagrams:

Dpen(S1, %2, Q%) = A (51,5, Q) + 01s(Q%) Abon(s1, 2, Q%) + O(a?)

Operl(S, Q) = Tlon(s, Q) + as(Q?) Tlen(s, @2 + 0(a2) . (2.2)

As far as their aspects relevant for our present purposemacerned, the theoretical status of these
spectral densities may be summarized as follows. In theld@pectral densit@pen(st, s, QZ), for

fixed s » and large momentum transfe@g, the one-loop contributioné?rt(sl,sQ, Q?) vanishes like

Aé%)n(sl, $,Q?%) 01/Q* and the two-loop contributioﬁ[()t)rt(si, S, Q?) approaches the behaviour [4]

1

(1) 2 :
Apert(SﬂJSZ?Q ) Q2_>oo 27T3Q2 )

in other words, in the limiQ? —  the lowest-order term decays faster than the next-to-loiees.
In the single spectral densityper(s, Q?), the two-loop correctioméi)rt(s, Q?) has been proven [5] to

vanish identically:aéé)n(s, Q?) = 0. Higher-order radiative corrections have not yet been tatied.
With the required spectral densities available at leasbspme order of perturbation theory, as
soon as the dependencies of the effective threstsetd®?) andse#(Q?) on the momentum transfer
Q? have been found, the form factors of interest can be eadilgaed from the LD sum rules (2.1).
Factorization theorems for hard form factors [6], allowfogseparation of the dynamics into short-
and long-distance contributions, establish the asynpbathaviour of the form factors for largg?:
QFn(Q) o 8mas(Q) fr,  QCFny(Q) V2t

Q2~>oo
The sum rules (2.1) with the spectral functions (2.2) repoad atO(a2) accuracy, this behaviour if

ngTmseff(Qz) = leiTms—eﬁ(QZ) = 41 f2 ~ 0.671 Ge\? (2.3)
holds. The remaining task is to determine the behavioureoéftfective thresholds at finite values of
Q2. Unfortunately, as analyzed in detail in Refs. [7], the fotation of a reliable criterion for fixing
athreshold poses a somewnhat delicate problem as, for@Aitiae effective thresholds¢(Q?) and
Sf(Q?) cannot be assumed to be equal to their asymptotes (2.3 rtiby will depend o®? and,
generally, differ from each other [8]. A very simple ideadsssume that the use of their asymptotic
values provides a meaningful approximation also at modémaitnot too small momentum transfer:
Seft(Q%) = S (Q?) = 412 £2. This choice defines a straightforward albeit rather naiveriddel [3].

It goes without saying that such crude approximations teffeetive thresholds may be well suited
to reproduce the overall trend but can hardly account forsaitile detail of confinement dynamics.
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3. Exact and Local-Duality Form Factorsin Quantum-M echanical Potential M odels

The (quantum-field-theoretic) LD sum-rule approach to lobstate form factors may be easily
carried over to quantum mechanics. Within the latter fraor&nthe features of any bound state can
be obtained with, in principle, arbitrarily high precisifiom the related solution of the Schrodinger
equation for the Hamiltonian governing the dynamics of ffstesn under consideration. Therefore,
guantum-mechanical potential models constitute an igsabround for estimating the significance
of LD models that employ for the effective thresholds emtgin the adopted sum rules the constant
limits fixed by some asymptotic behaviour at experimentadlgessible lower momentum transfers.
For this very reason, we examine quantum-mechanical patembdels defined by Hamiltoniah$
which must incorporate, for the study of the elastic formidgaconfiningand Coulomb interactions
(n =1) but, for the investigation of the transition form factorerely confining interactionsj(= 0):

2

k a
H= 2m +Veont(r) — N T Veont(r) = an (mn)", r=Ix/, n=211/2.

We ensure arealistic description of mesons by adoptingfonomerical analysis parameter values
appropriate for hadron physicsi= 0.175 GeV for the reduced mass of light constituent quarks and
a = 0.3 for the coupling strengttr of the Coulomb interaction term. For the confining interacs,

we consider several power-law potential shayigs(r), adjusting the associated coupling strengths
o, such that in each case the Schrodinger equation predictathe valuey(0) = 0.078 GeV¥/? for

the ground-state wave functighat the origin:o, = 0.71 GeV, 01 = 0.96 GeV andy; , = 1.4 GeV.
Then, the size of the lowest-lying bound state is about 1 fathns of typical hadronic dimensions.
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Figure1l: Exact quantum-mechanical effective thresholds for eldlft) and transition (right) form factors.

With the numerically exact solution of the Schrddinger diumeat hand, we are in a position to
confront the form factors arising thereof with correspamgdpredictions of the quantum-mechanical
counterparts of the LD QCD sum rules (2.1), which involveefive thresholdkes(Q) andEeff(Q),
respectively. Asinthe QCD case, the asymptotic behavibilrecelastic and transition form factors
in the limit of infinitely large momentum transf€ may be derived from factorization theorems [6].
In terms of the ground-state decay consty= |/(0) |2, this asymptotic behaviour is guaranteed if
the effective thresholds fulfikes(Q — ) = keft(Q — o) = (672 Ry)/3. Figure 1 shows that the LD
modelket(Q) = ket(Q) = (6772 Ry)Y/3 approximates independently of the confining potential & us
the exact effective thresholds yielding the true form festeith improving accuracy, starting for the
elastic form factor af? ~ 5—-8 Ge\ and for the transition form factor at some even lo@éwalue.
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4. The Pion Elastic Form Factor [1]

The pion belongs, beyond doubt, to the best-studied medtertheless, the one or the other
of its most important properties still cannot seriously kzénsed to be sufficiently well understodd.
Figure 2 displays a snapshot of the present status of th&s@lattromagnetic or elastic form factor
Fr(Q?) from both the experimental [9] and the theoretical [1, 10htof view. Obviously, there is
ample room for controversy, but no consensusg®@?) for momentum transfei®? ~ 5-50 Ge\f.

Q’Fr(Q) [GeV?]

0.6/ BPS2009 . — {
0.5 .
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Q* [GeV?]
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Figure2: Pion elastic form factoF(Q?): experimental data [9] and some recent theoretical findihgk0].

In order to cast some light onto these disquieting puzzligsir€ 3 depicts our translation of the
findings summarized in Fig. 2 to equivalent effective thoddse(Q?) calculated back from either
experimental data or theoretical predictionsFg(Q?): the exact effective threshold extracted from
the data is compatible with the assumption that the LD limétpproached at rather [a@f whereas,
contrary to quantum physics, theory seems not to care abeaitduality, at least fo? < 20 Ge\~.
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Figure 3: Parametrization of the effective threshelg(Q?) by an improved LD model [1] (labelled BLM)
vs. exact behaviour (red) of the equivalent effective thodédextracted from experimental data [9] (left), and
equivalent effective thresholds corresponding to thertgzal results foF;; [1, 10] depicted in Fig. 2 (right).

Rather precise measurements may be expected from JLabhafte? GeV upgrade of CEBAF.

10f course, whenever some problem in the treatment of anyeajitbund-state pseudoscalar mesons is encountered,
as a kind of automatic reflex-like response one may be tentptaidme within QCD the pseudo-Goldstone-boson nature
of the particle for preventing us from acquiring a satisfagunderstanding. Nevertheless, all comprehensive aphes
should be expected to be able to deal with this sort of “ineaience” and to ultimately incorporate such crucial feagur
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5. The (r°,n,n’) — yy* Transition Form Factors[2]

In order to consolidate our concerns and to substantiateamfusions, we discuss timeandn’
transitions(n,n’) — yy* before turning to the controversial issue of the pion’ssition ° — yy*.

5.1 Form Factorsfor the Transitions (n,n’) — yy*

The two isoscalar mesomsandn’, having the sama”C quantum numbers, are mixturesadif
light quarks. In the flavour basis, the mixing of the non+sgi@and strange contributions is given by

In) =
with mixing anglep ~ 39.3°; seee.g, Refs. [11, 12]. The form factors reflect this flavour struetu

5Fny(Q)  Fy(@) 5Fny(Q%) _. Feoy(Q)
25 S0P 3 35 Sne+ =3

Here, the non-strange afg component$,,(Q?) andF,(Q?) of the LD form factors are given by

au+dd

G+ dd >sinqo+|s_s;scosqo
\/é )

- >cos<o—|s‘s>sinrp, ') =

Friy(Qz) = sing, Fr;’y(Qz) =

coSsQ .

SH(e0) $H()
F”V(Qz /dsapert S Qz) FSV(Q2 /dsapert S Qz)

whereo(e>rt andg, (e)rtlabel the single spectral densitiye: of Eq. (2.1) with the corresponding quark,
n=u,d ors, propagating in the loop; each component utilizes an effe¢hireshold of its own [12]:

Va2, fam107f;, &) =4m?f2  fs~136f,.

In our numerical calculations, we adapg = my = 0 andms = 100 MeV for the light-quark masses.
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Figure4: Transition form factor§,, /) (Qz) for n andn’ the LD model fits the experimental data [13, 14].

According to all our experience gained by in-depth invedtans of the LD sum-rule approach
within guantum mechanics, this straightforward but adediit not too sophisticated LD framework
may not perform really well for low momentum transf€)$, where, as a brief look at Fig. 3 reveals,
the exact effective threshold is below the constant LD éffe¢hreshold inferred from the largg?
form-factor behaviour. However, for larger momentum tfanthe simple quantum-mechanical LD
model entails accurate predictions for form factors. Fegushows that, for both andn’ transition
form factors, we find the anticipated overall agreement betwthe LD predictions and experiment.
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5.2 Form Factor for the Transition 7° — yy*

In view of the undeniable successes of the LD model in the afige 1T elastic form factor and
of then andn’ transition form factors, its failure in the case of thittransition form factoF, (Q?)
is all the more surprising. Figure 5 displays how markedéylib prediction forFm,(Qz) misses the
BABAR data [15]. This becomes even more manifest by the lineanitbeQ? of the corresponding
equivalent effective threshod(Q?), which, at least in the region up @ ~ 40 Ge\2, exhibits no
tendency of approaching its LD limit (2.3). This intriguipgzzle still awaits a compelling solution.
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0.2 Lar | '

+
‘ 0.8 ++ + ‘

2, 2
0.15 LD 0.7 |vml an’t,
0.1 0.6 ‘] ! ‘
0.05 05
5 10

2
5 10 15 20 25 30 35 4OQ [GeVe]

Q? [Ge\/g]

1 15 20 25 30 35 40

Figure5: Form factoany(Qz) for the pion transitiom® — yy*: some experimental data [13, 15], at least the
BABAR data (red dots), apparently diverge from our LD predictthis unexpected behaviour is reflected by
the equivalent effective threshadgh(Q?) exhibiting a linear rise witl)? instead of approaching its LD limit.

6. Summary: Findings and Conclusions

By reconsidering the dependence of the pion elastic [1}/#hg, n’ transition [2] form factors
on the momentum transf&? using QCD sum rules in LD limit, we gain highly interestingights:

Pion dastic form factor: Transferring the outcomes of our quantum-mechanical aisaly QCD,
we expect the simple LD model to be applicable with incregsiccuracy foQ? > 4-8 Ge\f
irrespective of the adopted confining interactions. Fdisgaconfining interactions, this LD
model reproduces the elastic form factor @> 20-30 Ge\? with high precision. Accurate
measurements of this form factor at sm@dlsuggest that assuming for the effective threshold
its LD limit already at rather lovQ? = 5-6 Ge\f may constitute a reasonable approximation.
Hence, large deviations from this LD limit @ = 20-50 Ge\ must be regarded as unlikely.

Transition form factorsfor 7°,n,n’: Our observations in quantum mechanics can be understood

as hints that, for bound states of typical hadron extenstbied_D approach should work well

for Q2 larger than a few Ge¥/ and it indeed does for the — yy* andn’ — yy* form factors.
However, a recent measurement of the form factor for therakepion transitiorn® — yy* by

the BABAR experiment [15] implies a violation of local duality whicken grows withQ?, at

least up taQ? as high as 40 Ge’/ Within the LD sum-rule formalism (2.1), such behaviour of

a transition form factor cannot be accommodated byrestantequivalent effective threshold

but must be described by a line@f-dependence at4(Q?); a convincing explanation of this
has yet to be found. This conclusion enjoys full agreemettt ihie findings of Refs. [16, 17].
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