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1. Introduction

One of the most intriguing issues of the Standard Model (SM) is a flavour puzzle which can
be formulated as the following three problems:

• Problem of families replication and mass hierarchy: Why are there three families of fermions
in the SM? In particular, why are these generations differing only by masses and why is this
difference so large (mtop/mup ∼ 104)? Why are mixings in the quark sector relatively small
and why is the mixing between first and third generations suppressed compare to the mixings
between adjacent generations?

• Neutrino mass problem: Why do neutrinos have tiny masses and large mixings? Why neu-
trinos are so different from charged fermions?

• Flavour-changing neutral currents (FCNC) problem: Why we do not observe “horizontal”
inter-generation transitions?

This paper is a short review of existing works [1]-[9] In these papers in the frameworks of
”large extra dimensions” (LED) (see Ref. [10] for a review) an elegant solution to the flavour
puzzle has been suggested. The basic idea is an assumption that three generations of SM fermions
appear as three zero modes of single multi-dimensional vector-like (with respect to SM gauge
group) family. In the current review we concentrate on main points and basic ideas of the model at
the cost of loss of mathematical rigor. For more complete and more advanced details the Reader is
directed to the original works.

2. The Setup

Suppose one has single fermionic generation in a multi-dimensional theory. Let us consider
a topological defect whose core corresponds to our four-dimensional world. Chiral fermionic zero
modes may be trapped in the core due to specific interaction with the fields which build up the
defect. In some cases, the index theorem guarantees that the number of chiral zero modes is de-
termined by the topological number of the defect and by the charge of the fermion with respect to
the symmetry group of the fields forming the defect. We use this property to obtain three fermionic
generations localized on a defect while having only one generation in the bulk. If the Brout-Englert-
Higgs scalar couples to the defect, it can also be trapped in the core. Hierarchy between masses of
three fermionic modes arises due to their different profiles in extra dimensions [1, 2, 3].

To be specific, let us assume that there are two large additional dimensions.1 The topological
defect is an gauge vortex. A principal issue of models with LED is the localization of the SM gauge
fields. One of possible ways to avoid this problem is to consider the transverse extra dimensional
space as a compact manifold and to allow gauge fields to propagate freely in the extra dimensions.
In what follows we assume that the extra dimensions form a two dimensional sphere with radius
R [4]. Though gravity is not included in the consideration, it should be stressed that the choice of

1The number of extra dimensions may be larger than two. What we in fact assume is that the size of another
additional dimensions much smaller than the size of the two dimensions under consideration.
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Fields Profiles Charges Representations
Ug(1) UY (1) SUW (2) SUC(3)

scalar Φ F(θ)eiϕ +1 0 1 1
F(0) = 0, F(π)' v

vector Aϕ A(θ)/e 0 0 0 0
A(0) = 0, A(π) = 1

scalar X X(θ) +1 0 1 1
X(0) = vX , X(π) = 0

scalar H H(θ) –1 +1/2 2 1
Hi(0) = δ2ivH , Hi(π) = 0

fermion Q 3 L zero modes axial (3,0) +1/6 2 3
fermion U 3 R zero modes axial (0,3) +2/3 1 3
fermion D 3 R zero modes axial (0,3) −1/3 1 3
fermion L 3 L zero modes axial (3,0) −1/2 2 1
fermion E 3 R zero modes axial (0,3) −1 1 1
fermion N Kaluza-Klein spectrum, 0 0 1 1

no zero mode
SM gauge γ,G Kaluza-Klein spectrum 0 – – –

bosons Z,W± starting from zero

Table 1: Field content of the model. For convenience, we describe here also the fields profiles in extra
dimensions. θ and ϕ are the polar and the azimuthal angles on the sphere, respectively. The vortex is
localized at θ = 0.

the manifold is not important for our principal conclusions [5]. The extra dimensions can even be
infinitely large. In this case, the role of the radius R of the sphere is taken by a typical size of the
localized gauge zero modes but not by a size of the extra dimensions.

The matter field content of the model is summarized in Table 1 and the profiles of the relevant
fields are sketched in Fig 1. The scalar field Φ, together with U(1)g gauge field, forms a vortex,
while two other scalars, X and H, develop profiles localized on the vortex. There is one fermionic
generation which consists of five six-dimensional fermions Q, U , D, L, and E. Each of the fermions
develops, in the vortex background, three chiral zero modes localized in the core of the vortex,
which correspond to three generations of the SM fermions. There is an additional fermion N which
is neutral both under U(1)g and SM gauge group. This fermion is not localized and its Kaluza-Klein
(KK) modes play a role of sterile neutrinos.

The spinor-scalar couplings, responsible for the localization of the fermionic zero modes, are2

∑
Ψ=Q,L

gΨΦ
3
Ψ̄

1−Γ7

2
Ψ+h.c. −→ 3 left handed zero modes

∑
Ψ=U,D,E

gΨΦ
3
Ψ̄

1+Γ7

2
Ψ+h.c. −→ 3 right handed zero modes (2.1)

2We use the chiral representation for the six-dimensional Dirac Γ-matrices (see Ref. [1] for notations). In particular,
Γ7 = diag(1,−1) is a six-dimensional analog of the four-dimensional γ5.
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Figure 1: Sketch of the relevant background fields profiles (black and pink) and the fermionic zero modes
(red, green and blue). The latter are labeled by their ϕ-dependencies.

This coupling may look surprising, as it is obviously non-renormalisable in 4 dimensions. We are
not considering renormalisability of the theory here, as the 6-dimensional context is most likely
an effective model, but even in this case it might be suitable that the 4-dimensional reduction be
renormalisable.

What is important here is that three fermionic zero modes localized in the vortex background
have different generalized (supplemented by U(1)g global rotations) angular momentum [4] and,
as a result, have different ϕ and θ -dependencies. Typically, one has

Ψn(θ ,ϕ)∼ fn(θ)ei(3−n)ϕ , n = 1,2,3 , (2.2)

with the θ -dependent wave functions fn(θ) behaving near the origin as:

fn(θ)∼ θ
3−n , θ → 0 . (2.3)

3. Mass hierarchy and mixings

The couplings (2.1) are responsible only for the localization of the fermionic zero modes. From
the 4-dimensional point of view these modes describe localized massless chiral fermions with the
usual quantum numbers under SM gauge group. Now comes the time to generate the “usual”
fermion masses, and to break the SU(3)×SU(2)×U(1) symmetry. This is done in the usual way,
through the Brout-Englert-Higgs mechanism, at the price of introducing a scalar doublet, which we
name H. In fact, for the purpose of separating the various quantum numbers, we write (e.g., for the
“down” quarks), instead of the usual coupling:

LYukawa = YdHXQ̄
1−Γ7

2
D+ εdYdHΦQ̄

1−Γ7

2
D+h.c. , (3.1)

where Yd and εdYd are coupling constants, the vortex scalar Φ has winding number 1 (see Table 1),
while X and H have non-vanishing values at θ = 0 and zero winding number.

The reduction to 4 dimensions involves integration over ϕ and θ and generates the mass terms.
The first term in (3.1) yields

m(1)
D,nm ∝

π∫
0

dθ sinθ

2π∫
0

dϕ f †
Q,n fD,mX(θ)H(θ)ei(n−m)ϕ . (3.2)
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Clearly, the integration over ϕ guarantees that only diagonal entries occur. The integral over θ is
saturated near the origin, more precisely, in the region where the fields H and X are non-zero. This
region coincides, as it is shown in Fig. 1, with the region [0,θΦ] where Φ is appreciably different
from its VEV [3, 6]. In this region one can safely use Eq. (2.3) for the fermionic wave functions
and finds [4]

m(1)
D,nm ∼ δnmσ

2(3−n) , (3.3)

where σ = θΦ/θA and θA ∼ 1 is the typical size of the gauge field of the vortex.
Due to the non-trivial ϕ-dependence of Φ the second term in (3.1) results in non-diagonal

elements of the mass matrix:

m(2)
D,nm ∼ εdδn+1,mσ

2(3−n)−1 (3.4)

The mass eigenstates are obtained by diagonalization (3.3), (3.4) and the power-like hierarchical
mass pattern

m33 : m22 : m11 = 1 : σ
2 : σ

4

arises at σ ' 0.1. The CKM-matrix has the form

UCKM∼

 1 σ σ 4

σ 1 σ

σ2 σ 1


and reproduces observed mixings in the quark sector of the SM.

4. Neutrinos masses. Why are they different?

Now we want to consider whether the scheme can be extended to accommodate mass and
mixing data in the neutrino sector. An obvious possibility to generate neutrino masses would be to
treat them exactly like the charged fermions, with a Dirac mass obtained at the cost of introducing
a 6D field N, bound to the vortex, and from which the three families of 4D right-handed neutrinos
emerge. However, this possibility does not offer a natural explanation for the smallness of the
neutrino masses, which in this case require tiny coefficients in the Lagrangian.

It is therefore tempting to consider other solutions, namely the case where the “right hande”
neutrino field is NOT bound to the vortex. In the context of models with LED, tiny neutrino masses
are often the result of a dilution effect: the field that provides right hande neutrinos, being singlet
under the SM gauge group, can be non-localized, and therefore have a small overlap with the wave
function of SM fields. A first attempt using a non-localized field N was made in Ref. [7]. However,
that approach predicts a neutrino mixing pattern that differs significantly from the observed one.

Here we consider another possibility [9]. We assume that spinor N is a gauge singlet both
under SM and U(1)g gauge group. It means first of all, that it can freely propagate in the extra
dimensions. Secondly, one can (and, in general, have to) write a Majorana-like mass term in 6D
for it:

M
2
(N̄cN + N̄Nc).
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From 4-dimensional point of view one has KK tower of fermions possessing 4D Majorana mass M
and different Dirac masses starting from 1/R.3

Thirdly, the gauge invariance allows one to introduce the following couplings (H̃ = iσ2H∗)

∑
S+

Y+
ν ,S+H̃S+L̄

1+Γ7

2
N +∑

S−

Y−
ν ,S−H̃S−L̄

1−Γ7

2
N +h.c. ,

where S+ and S− have U(1)g gauge charges 1 and −2, respectively, and can be4

S+ = X∗, Φ
∗, X∗2Φ, . . .

S− = X2, XΦ, Φ
2, . . . (4.1)

In 4D these couplings give rise to mixings between heavy modes of N and zero modes of active SM
neutrinos. Together with the Majorana mass of modes of N it winds up a “see-saw” mechanism
yielding tiny Majorana masses of the active neutrinos. The resulting neutrino mass matrix can be
schematically written in the form:

mν
mn ∼

π∫
0

dθ

2π∫
0

dϕF(θ ,ϕ)L̄c
nLm , (4.2)

where F(θ ,ϕ) is determined by S± as well as by wave functions of N. The main point and the
main difference from the quark sector (see Eq. (3.2)) is the presence charge conjugated spinor in
the integrand: L̄c ∼ LT . This leads to completely different from (3.3), (3.4) selection rules. For
instance, if we restricted ourselves by ϕ-independent S± (the first structures in (4.1)) then F does
not depend on ϕ , and one has

mν
mn ∼

2π∫
0

dϕei(4−n−m)ϕ ∼ δn,4−m ∼

 · · 1
· σ2 ·
1 · ·

 (4.3)

The inclusion of the ϕ-dependent structures in (4.1) gives rise to non-zero off secondary diagonal
elements which have at least an order of σ .

What are consequences of the mass pattern (4.3)? The neutrino mass matrix (4.3) is diagonal-
ized by a matrix with the structure

Uν ∼

 1/
√

2 1/
√

2 σ

σ σ 1
−1/
√

2 1/
√

2 σ

+O(σ2) .

Let us emphasize that the large mixing angle in the 1–3 block is maximal up to σ2 corrections.
When the charged lepton mass matrix contains a large mixing angle in the 2–3 block, this model

3It is worth noting that a possible 6D Dirac mass term does not play any role and translates to a shift of 4D Dirac
mass spectrum. This is the reason why we do not consider it.

4In the quark sector (Sec. 3) we restricted ourselves to considering S+ =Φ∗,X∗ only. The reason is that an inclusion
of more composite structures (e.g., S−) does not play any significant role.
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predicts two large mixing angles, as observed. The remaining small mixing angle Ue3, which
corresponds to the weight of the lightest mass eigenstate in the electronic neutrino, is predicted to
be of order σ ∼ 0.1.

The diagonalized neutrino mass matrix has the inverted hierarchy pattern diag(m+O(σ2),−m+

O(σ2),mσ2). Therefore, this model naturally predicts a hierarchy in the mass squared split-
tings relevant in neutrino oscillation experiments ∆m2

12/∆m2
13 ∼ σ2 ∼ 0.01, in good agreement

with the observed data ∆m2
12/∆m2

13 ' 3.2%. Moreover, m1 and m2 form a “pseudo-Dirac” pair
as m1 +m2 ∼ σ2m. It leads to a partial cancellation in the effective Majorana mass, |〈mββ 〉| =
|∑

i
miU2

ei| ' 1/3
√

∆m2
13, defining the amplitude for neutrinoless double-beta decay.

5. FCNC

From the 4D point of view the presented model completely reproduces all properties of SM
if one considers zero modes only (including zero modes of the SM gauge fields). In particular,
all FCNC processes are strongly suppressed as it occurs in SM. However, from the 6D point of
view we have only a single generation and there is no difference, say, between µ and e. That is,
heavy (non-zero) modes of the neutral SM gauge bosons can (and have to) violate flavour and/or
lepton numbers. Nevertheless, without account of inter-generation mixings, the generalized angular
momentum or, what is the same, the generation number G is exactly conserved. This forbids all
processes with nonzero change of G; the probabilities of the latters in the full theory are thus
suppressed by powers of the mass-matrix mixing parameter, (εσ)2∆G. However, the amplitudes of
processes with ∆G = 0 but lepton and quark flavours violated separately are suppressed only by the
mass squared of the KK modes of the SM gauge bosons.

In Ref. [5] the following specific flavour violating processes have been studied:

• ∆G = 0: K0→
L → µe, K+→ π+e−µ+;

• ∆G = 1: µ → eγ , µ → 3e, µ → e-conversion;

• ∆G = 2: KL−KS mass difference and CP violation in kaons.

These processes are known to give the strongest constraints on masses and couplings of new vec-
tor bosons. It was found that indeed the pattern of flavour violation is distinctive: contrary to
other models, processes with change of the generation number G by one or two units are strongly
suppressed compared to other rare processes. The strongest constraint on the model arises from
non-observation of the decay K0 → µe; it requires that the size of the sphere (size of the gauge-
boson localization) R satisfies κ/R & 64 TeV, where κ is a dimensionless parameter depending on
specific model: details of the geometry, mechanism of the localization of the vector fields, and so
on. A clear signature of the model would be an observation of K0→ µe decay without observation
of µ → 3e, µ → eγ and µe-conversion at the same precision level.

For the spherical model under discussion κ = 1. However, in general one can expect that κ
can differ from unit and can be small enough (κ ∼ 0.01). In the latter case the masses of the first
non-zero excitations of the SM gauge bosons M′ ' 1/R can be of order of few TeV and vector
bosons can, in principle, be observed at colliders. In general, there are two possibilities. First of
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all, one can try to search for “usual” heavy vector bosons, that is the heavy KK modes which do
not change generation number. The second possibility is to look for heavy KK vector bosons due
to the flavour-changing decay modes into (µe) or (µτ) pairs. The flavour-changing decays of this
kind have a distinctive signature: antimuon and electron (or their antiparticles) with equal and large
transverse momenta in the final state.

The latter possibility has been investigated in Ref. [8]. In particular, it was found for the ex-
pected LHC value of 100fb−1 for luminosity and

√
s = 14TeV that the number of pp→ µ+e−

events varies from 1 to 10 per year for M′ ' 3÷ 1TeV. The probability of the production (µ−e+)
pairs is approximately ten times smaller due to the former process can use valence u and d-quarks
in the proton, while the second only involves partons from the sea. The same numbers are repre-
sentative also for the (µτ) channels.

There are also other signatures of FCNC effects, in particular, with hadronic final states, when
(t̄,c) or (b̄,s) jets are produced. The dominant contribution to these processes arises from the
interactions with higher KK modes of gluons, which have large coupling constant. For the mass
of M′ = 1TeV the number of events has been estimated as N = 1.2 ·103. But potentially large SM
backgrounds should be carefully considered for such channels.

6. Conclusions

To conclude, we presented a possible elegant solution to the flavour puzzle. The mechanism is
based on an assumptions that the three SM generations originate from a single family in a higher-
dimensional theory. The generation number is none other than angular momentum and, therefore,
has an geometrical origin.

We explained why neutrinos are different from the sector of the charged fermions. A light
neutrino mass matrix where one mixing angle is automatically maximal and where the eigenvalues
obey an inverted hierarchy with a pseudo-Dirac pattern for the heavier states m1 '−m2� m3 is a
result of a mixing between active neutrinos and a single heavy sterile 6D fermion with Majorana-
like mass.

The 6D Lagrangian with one generation contains much less parameters than the effective one.
All masses and mixings of the SM fermions are governed by a few parameters of order one. This
fact allows for specific phenomenological predictions. In particular, the KK modes of the vector
bosons mediate flavour-violating processes. The pattern of flavour violation is distinctive: contrary
to other models, processes with change of the generation number by one or two units are strongly
suppressed compared to other rare processes. The strongest constraint on the model arises from
non-observation of the decay K→ µe; it requires that the size of the extra-dimensional sphere (size
of the gauge-boson localization) satisfies 1/R & 64 TeV. The KK modes of vector bosons have
larger masses, but for large enough R, could be detected by precision measurements at colliders.

One more point which we did not discuss in this review is a Brout-Englert-Higgs boson prop-
erties. The model predicts that its mass can not be much larger then 100 GeV [6].
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