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Linear approximation in the Møller gravity theory is presented. It is shown that in the case of  
linear approximation we can treat the frame field over the background as the usual metric field 
(gravity) and  an antisymmetric second rank tensor field with spin 1 (matter). Thus, we have some 
bosonic matter obtained from geometrical considerations. This matter “feels” the reference frame 
structure by means of interacting with a background frame, and in the general case has an effective 
mass, depending on time and position. Thus, the properties of that matter depend in an unusual way 
upon the background. We review briefly the theory for an arbitrary choice of the background and 
pay a special attention to some interesting cases, such as flat the Minkowski space or Schwarzschild 
backgrounds. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
The XXth International Workshop High Energy Physics and Quantum Field Theory  
Sochi, Russia 
September 24-October 1, 2011

                                                 
1 Speaker 



P
o
S
(
Q
F
T
H
E
P
2
0
1
1
)
0
7
9

Linear approximation… Edward Rakhmetov 

 
     2 

 
 

 

1. Introduction 

In this paper we present a linear approximation in an interesting General Relativity 
generalization suggested by C. Møller [1]. With the exception of this little introduction and a 
brief review of the Møller gravity (section 2), we are going to discuss the properties of an 
antisymmetric second rank tensor field with spin 1.  

In the case of linear approximation such field corresponds to the antisymmetric part of the 
small frame fluctuation above an arbitrary background solution. It has a simple geometrical 
interpretation. The action of the Møller gravity theory is not invariant under the rotations of the 
frame [1, 2]. Thus, the reference frame is a dynamical variable in this theory. In this paper we 
demonstrate that in the case of linear approximation the convenient dynamical variables to 
describe the small frame fluctuation above an arbitrary background are infinitesimal rotations of 
the reference frame. There is a hope that we can treat this “field of frame rotations” as a “Dark 
Matter”, obtained from geometrical considerations only. 

As was shown in [2] the characteristic constants of the Møller gravity Lagrangian do not 
need to be necessarily small in comparison with the General Relativity constant to obtain the 
same physically interesting background solutions, which appear in General Relativity. (For 
example, the spherically symmetric Schwarzschild solution or the Kerr solution). These 
solutions appear in the case of arbitrary constants too, where some relations for these constants 
are valid [2, 3]. If the couplings of the theory are not small, in the case when background 
solutions exist, we can also hope that even small fluctuations above a background give an effect, 
which can be comparable with the effects of General Relativity. And, as is shown below, in the 
case of linear approximation such an effect can be treated as the presence of a bosonic matter, 
which is described by the antisymmetric second rank tensor field. 

2. Møller gravity theory 

It was C. Møller, who first put forward this theory in 1978 [1]. The Møller gravity theory 
is a metric theory, in which the metric tensor 

3

0
( ) ( ) ( ) ( ) ( )g g g g gµν µ ν µ ν

α=

≡ δ αα α α ≡ α α∑ ,  { }( ) 1,1,1,1diagδ αβ ≡ −                                    (2.1) 

is constructed from an orthonormal tetrad: 
( ) ( ) ( )g g µ

µα β ≡ δ αβ                                                                                                        (2.2) 

Here indices in the brackets are frame (vielbein) indices, which run from 1 to 4, and the 
summation over the repeated indices is implied. The stress tensor for this vector fields (denoted 
by ( )f µνα ) is, as usually:  

[ ]( ) ( )f gµν µ να ≡ ∂ α                                                                                                          (2.3) 

Where the antisymmetrization over the indices in the square brackets is implied. The 
coordinate indices can be turned into vielbein indices as it is presented below: 
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( ) ( )C g Cµν λ µνλα α ≡                                                                                                         (2.4) 

We can obtain the Riche tensor from the stress tensor: 
1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2

1 1 1( ) ( ) ( ) ( ) ( ) ( )
2 2 2
1 1 1( ) ( ) ( ) ( ) ( ) ( )
2 2 4

R f f f

f f f f f

f f f f f f

αβ = ∂ α µµβ + ∂ β µµα + ∂ µ βαµ

+ ∂ µ αβµ − αβµ ννµ − βαµ ννµ +

− µνα νµβ − µνα µνβ + αµν βµν

                                                    

(2.5) 
Where ( ) ( )g µ

µ∂ α ≡ α ∂                                                                                                    (2.6) 

Contacting indices in different ways, we can build from the stress tensor three different 
scalars:  

1L f f αβγ
αβγ≡ 2L f f βαγαβγ≡ 3L f fα βγ

αγ β≡                                                                        (2.7) 

Then, in general case, the simplest action quadratic in the partial derivatives is: 

( )0 1 1 2 2 3 3
X

S k k L k L k L gdx= + + +∫                                                                                  (2.8) 

where 0k , 1k , 2k , 3k  are arbitrary dimensional constants. 
Using (2.5) we can obtain more usual expression for Einstein-Møller action (up to a complete 
divergence): 

( )0 3 1 1 2 2
X

S k k R k L k L gdx′ ′= + + +∫
                                                                                  

(2.9) 

We could not write the action with the  terms  L1 and  L2, if we used just the  metric 
tensor without the vielbein  formalism. Thus, we have a generalization of metric gravity. 
As we can see, Møller gravity theory coincides with General Relativity, if 1k ′ , 2k ′ is equal to 0. 
Denoting the variation of the action with respect to ( )g αµ  as  

1( )
( )
SX

gg
α

α

δ
µ ≡

δ µ
,                                                                                                    (2.10) 

we can write  the symmetric and the antisymmetric parts of the equations of motion 
1( ) 0

( )
SX

gg
α

α

δ
µ ≡ =

δ µ
 separately. The symmetric part gives: 

( ) ( ) ( )

( ) ( )
3 1 2 1 2 [ ]

( ) ( ) [ ]

( )
1 2 2 1 2

14 2 2 2
2

2 2 2 0

X k R g R k k f k k f f

k k f f k f f g k f f k f f

µ µν
αβ αβ αβ αβ µ µν α β

µν α β α βµν αβ µνλ µνλ
µν µν µνλ νµλ

⎛ ⎞ ′ ′ ′ ′= − − + Λ + + ∇ − − +⎜ ⎟
⎝ ⎠

′ ′ ′ ′ ′+ + − + + =
       (2.11) 

The antisymmetric part of the equations of motion is 
( ) ( )[ ] [ ] [ ]

1 2 2 1 22 2 4 2 3 0X k k f k f k k f fαβ αβ µ µαβ µν α β
µ µ µν′ ′ ′ ′ ′= − ∇ − ∇ − − =                     (2.12) 

If 1k ′ , 2k ′  are equal to 0, the antisymmetric  part vanishes, and the symmetric part gives us 
General Relativity. As we can see, in the Møller gravity theory we have more restrictions 
on frame vectors, than in General Relativity, because of the additional antisymmetric 



P
o
S
(
Q
F
T
H
E
P
2
0
1
1
)
0
7
9

Linear approximation… Edward Rakhmetov 

 
     4 

 
 

part of the equations of motion. And now the action of the theory is not invariant under 
the rotations of the frame, unlike in General Relativity. 

3.Linear approximation 

3.1 Small rotations as convenient dynamical variables 

Let us divide the variation ( )g βδ α in two parts: 

1( ) ( ) ( )
2

g g gµ
β µβ βδ α ≡ α δ +ω α                                                                                              (3.1) 

where gµβδ is a variation of the metric tensor and ( )βω α is a remnant. Then αβω  is an 
antisymmetric second rank tensor, which can be defined by means of frame vectors:  

[ ]
1 ( ) ( )
2

g gαβ α βω = λ δ λ                                                                                                            (3.2) 

1( ) ( ) ( ) ( ) ( )
2

g g g gµ µ
µ µ⎡ ⎤ω βα = α δ β − β δ α⎣ ⎦                                                                          (3.3) 

Let us consider the variations with respect to gµβδ and ( )ω βα independently. Then in (3.1) we 
can do the integration over ( )ω βα  and, finally, obtain for finitesimal ( )Ω βα : 

( ) 1( ) ( ) ( )
2

g e g g gν Ω αβ νµ
β β µβ ν

⎧ ⎫′ α = δ + δ αβ δ β⎨ ⎬
⎩ ⎭

                                                                      (3.4) 

Here ( )Ω βα are the parameters of the rotations, because of 
( ) ( )( ) 2

i T
e e

− Ω µν µναβΩ αβ = , where 

[ ]( ) ( ) ( ) ( ) ( )T iµναβ ≡ δ µα δ νβ −δ µβ δ να , as we can see, are generators of the rotation group. 
Thus, in Møller gravity we can consider the parameters of the frame rotations as 

reasonable dynamical variables. But unfortunately, the Lagrangian of the theory is non-
polynomial for these variables. On the contrary, the Lagrangian is polynomial in the case of 
linear approximation, when the frame fluctuation above the background are small, so that we 
can consider the infinitesimal parameters of the frame rotations as the antisymmetric second 
rank tensor field.  

3.2 Equations for the small frame fluctuation above an arbitrary background  

If ( )g αµ  and ( ) ( ) ( )g g gα α α′ µ = µ + δ µ  are two close solutions of the motion equations, 

then ( )g αµ  is a background and ( )g αδ µ are small fluctuations above this background. If we 

consider the pure rotations ( ) ( )g g µ
β µνδ α = α ω only, then from the antisymmetric part of the 

equations of motion we obtain the equation for the small fluctuations: 

( ) ( )

( ) ( )
( ){ } ( ){ }

[ ]
1 2 3 2 3

[ ] [ | | ] [ ] [ ]
1 1 2 3 2 3

[ [ ] [ ] [ ]
2 3 2 3

12
2

2 2

0

k k k k k

k C k C k k C k k C

k k C C C k k C C C

µ αβ α βµ
µ µ

µ α β λ λ α µ β α β µν αβ µν
λ µ µ λ µν µ ν

µ β µν β α λ ν αβ λ ν α β λµ
µλ λ µν µ νλ

− + + ∇ ∇ ω + + ∇ ∇ ω +

− ∇ ω − ω ∇ + + ∇ ω − + ∇ ω +

+ + ∇ + ω + + ∇ − ω =

    (3.5) 

Where ( ) ( )C gαβ α βγ ≡ ∇ γ  
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In this paper we will investigate this equation for some special backgrounds: 

3.2.1 Flat Minkowski space as a background 

For the Minkowski background, the equation for the small fluctuations (3.5) takes a simple 
form:  

( ) ( ) [ ]
1 2 3 2 3

12 0
2

k k k k kµ αβ α βµ
µ µ− + + ∇ ∇ ω + + ∇ ∇ ω =                                                        (3.6) 

Since for Minkowski space we can take the frames with 0Сαβγ =  

If 1 2 32 0k k k+ + = and 1 0k ≠ , we have the equation for the massless antisymmetric 

second rank tensor field with spin 1, 
[ ]

1 0k α βµ
µ− ∇ ∇ ω =                                                                                                                    (3.7) 

This field has, as usually, two transverse polarizations. In the general case we have longitudinal 
polarizations also, but later we will consider the last case only, because physically interesting 
background solutions (like the spherically symmetric Schwarzschild solution or the Kerr 
solution) appear only if 1 2 32 0k k k+ + = [2, 3]. 

3.2.2 Schwarzschild solution as a background 

An expression for the reference frame in the case of Schwarzschild solution is suggested in 
[2]. It is easy to show that for the Schwarzschild reference frame we have two non-trivial 
expressions for the components of Cαβγ :  

2
001 ,rC e γ= − γ , 1 ,ab ab rC g= α                                                                                                   (3.8) 

where 0

0

ln r r
r r
−

γ =
+

, ( )0 02 ln 1 /r rα = α + +  and 0r  is the Schwarzschild radius. 

Thus, we have from (3.5) the equation for the small fluctuations above the Schwarzschild 
background: 

1
[ ] [ ]1 0A Bµ
α βµ α β αβ∇ ∇ ω + ∇ ω + ω =                                                                                        (3.9) 

where
2 2

1 0
2 2

0

4
( )

e rA
r r r

− γ

= −
−

, 
( ) ( )( ) ( )

2 2
0 22 2 2 2 2 2

0 0 0 0

1 2 24B e r
r r r r r r r r r r r

− γ
⎧ ⎫⎪ ⎪= − + +⎨ ⎬

− + − +⎪ ⎪⎩ ⎭
 

As we can see, this equation describes the waves, which have an effective mass, which 
depends on the radial component. 

3.2.3 General remarks about an arbitrary homogeneous and isotropic background 

If we try to investigate an arbitrary homogeneous and isotropic background (like de Sitter 
space, anti de Sitter space or Friedman solutions) we can use the following expression for the 
reference frame: 

0(0)g i= , ( )( ) ( )q q
tg a e g aα=                                                                                             (3.10) 
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where ( )tα - is a function of time and ( )qg a - a frame on the three-dimensional sphere or 

hyperboloid. Then, for such a reference frame we have non-trivial expressions for the 
components of Cαβγ :   

0 0ab abC g= ∂ α , abc abcC e−α= ς ε                                                                                             (3.11) 

where ς is 1, 0, i, for spaces with the positive, zero and negative curvature correspondingly. 
Thus, we have from (3.5) the equation for the small fluctuation above an arbitrary homogeneous 
and isotropic background: 

0
[ ] [ ]0 0A Bµ
α βµ α β αβ∇ ∇ ω + ∇ ω + ω =                                                                                     (3.12) 

where 0A and B are some functions of time and αβω  can be interpreted as waves with some 

effective mass, which depends on time. 

3.3 An interaction between spinors and small frame fluctuations above an arbitrary 
background 

It is obvious that our antisymmetric second rank tensor field can interact with spinor 
matter, because it comes from small frame fluctuations above a background, because spinors 
“feel” the frame structure.  

Let us write the Dirac equation in curved space-time: 

( ) 0mν
νγ ∇ + ψ = , where 

1
4

C λ τ
ν ν νλτ

⎛ ⎞∇ ψ ≡ ∂ + γ γ ψ⎜ ⎟
⎝ ⎠

                                                    (3.13) 

is a covariant derivative for the spinor ψ  and ( ) ( )gµ µγ = α γ α , where ( )γ α  are gamma-

matrices for  the flat space. Then from (3.13), ( ) ( )g g µ
β µνδ α = α ω  and ( ) ( )C gαβ α βγ ≡ ∇ γ  we 

obtain an equation with an interaction between the spinors and the antisymmetric second rank 
tensor field µνω : 

1 0
4

mµ µ τ α β
µ µ τ µ αβ

⎧ ⎫⎛ ⎞γ ∇ + + γ ω ∇ + γ γ ∇ ω ψ =⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

                                                               (3.14) 

4. Conclusions 

In this paper we presented a linear approximation in the Møller gravity theory. It is shown 
that in the case of linear approximation, we can treat the reference frame field above the 
background as the usual metric field (gravity) and some antisymmetric second rank tensor field 
with  spin 1 (matter). 

 This second rank tensor field has a simple geometrical interpretation. We can consider it 
as a field of the small rotations of the frame. We can do that, because frame is a dynamical 
variable in this theory, unlike in General Relativity. We suppose that in such case, we have 
some variant of “Dark Matter” obtained from geometrical considerations only.  

The effects from such matter can be comparable with the effects of General Relativity, 
because the characteristic constants of the Møller gravity Lagrangian do not necessarily need to 
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be small in comparison with the General Relativity constant in the case when the physically 
interesting background solutions exist. 
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