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Localization of scalar fields on thick branes with asymmetric geometries in the bulk Vladimir Andrianov

1. Introduction

Different scenarios of domain wall generation and their applications to elementary particle
physics and cosmology can be found in a number of reviews, in particular, in [1] and references
therein. The influence of gravity is especially interesting, which plays an important role in a (de)
localization of matter fields on the brane [2] - [8], [9]. As regarding to gravity the question arises
under what circumstances the localization of spin-zero matter fields on a brane is still possible
when the minimal interaction with gravity is present? This work is partially devoted to answer this
question.

In our talk we consider a model of the domain wall formation with finite thickness ("thick"
branes) and gravity in five-dimensional noncompact space-time [10], but with asymmetric behavior
of a warped factor in the bulk on both sides of the brane, i.e. with different anti-de Sitter geome-
tries. The formation of "thick" brane with the localization of light particles on it was obtained
earlier in [11] with the help of background scalar (and gravitational) fields, when their vacuum
configurations have nontrivial topology. Appearance of scalar states with (almost) zero mass on
a brane has happened to be possible. However, as it was previously shown [9], the existence of
the centrifugal potential leads to absence of localized modes on a brane when background gravity
realizes a symmetric geometry of Anti-de Sitter type on both sides of the brane. Therefore, in
this situation it makes sense to explore the mechanisms of generation of localized states when the
symmetry of the geometries on both sides of the brane is manifestly violated by the introduction of
a defect in the direction of extra dimension.

2. Formulation of the model

Consider the five-dimensional space, providing it with a pseudo Riemann metric,

XA = (xµ ,z) , xµ =
(
x0,x1,x2,x3) , ηAB = diag(+,−,−,−,−)

with extra spatial coordinate z. It is assumed that the size of extra dimension is large or infinite.
We introduce a gravitational field with the five-dimensional metric tensor gAB, which is re-

duced to ηAB in flat space and for the rectangular coordinate system. We define the dynamics of
real scalar field Φ(X) with a minimal interaction to gravity with the help of the action functional,

S[g,Φ, ] =
∫

d5X
√
|g|L (g,Φ,), L =−1

2
M3

∗R+
1
2
(∂AΦ∂ AΦ)−V (Φ,) , (2.1)

where R is a scalar curvature, |g| is a determinant of the metric tensor, and M∗ is a five-dimensional
gravitational Planck scale.

The equations of motion are

RAB −
1
2

gABR =
1

M3
∗

TAB, D2Φ =−∂V
∂Φ

, (2.2)

where D2 = DCDC is a covariant D’Alambertian, and the energy-momentum tensor reads,

TAB = ∂AΦ∂BΦ−gAB

(
1
2

∂CΦ∂CΦ−V (Φ,)

)
. (2.3)
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Let us confine ourselves to the study of classical vacuum configurations, which do not violate
four-dimensional Poincare invariance. In this part it is more convenient to present a metric in the
conformally flat form, gAB = A2 (z)ηAB.

Then the equations of motion are simplified,(
A′

A2

)′
=− Φ′2

3M3
∗A

, −2A5V (Φ) = 3M3
∗

(
A2A′′+2A(A′)2

)
,
(
A3Φ′)′ = A5 ∂V

∂Φ
, (2.4)

One can prove [11] , that only three of these equations are independent.

3. Fluctuations around the background metric

The action (2.1) is invariant under diffeomorphisms. Infinitesimal diffeomorphisms corre-
spond to the Lie derivative along an arbitrary vector field ζ̃ A(X), defining the coordinate transfor-
mation X → X̃ = X + ζ̃ (X).

Let us introduce the fluctuations of the metric hAB (X) and of the scalar fields ϕ (X) around the
background solutions, of the equations of motion,

gAB (X) = A2 (z)(ηAB +hAB (X)) ; Φ(X) = Φ(z)+ϕ (X) .. (3.1)

Since 4D Poincare symmetry is not broken, we define the corresponding 4D part of the metric
metric fluctuations as hµν and introduce the notation for gravivectors h5µ ≡ vµ and graviscalars
h55 ≡ S. Let’s rescale the vector fluctuations ζ̃µ = A2ζµ and the scalar ones ζ̃5 = Aζ5.

Now we expand the action to quadratic order in fluctuations. The full action after this proce-
dure is a sum,

L(2) = Lh +Lϕ +LS +LV , (3.2)

where√
|g|Lh ≡−1

2
M3

∗A3
{
−1

4
hαβ ,νhαβ ,ν − 1

2
hαβ
,β h,α +

1
2

hαν
,α hβ

ν ,β +
1
4

h,αh,α +
1
4

h′µνh′µν − 1
4

h′2
}
,

√
|g|Lϕ ≡ 1

2
A3(ϕ,µϕ ,µ −ϕ ′2)− 1

2
A5
(∂ 2V

∂Φ2 ϕ 2)+
1
2

A3h′(Φ′ϕ),

√
|g|LS ≡

1
4

(
−A5V S2 +S

(
M3

∗A3 (hµν
,µν −h,µ,µ

)
+M3

∗
(
A3)′ h′+2

(
A3(Φ′ϕ)

)′−4A3(Φ′ϕ ′)
))

,

√
|g|LV ≡−1

8
M3

∗A3vµν vµν +
1
2

vµ
[
−M3

∗A3 (h,νµν −h,µ
)′
+2A3(Φ′ϕ,µ)+M3

∗

(
A3
)′

S,µ
]
, (3.3)

where vµν = vµ,ν − vν ,µ , h = hµνηµν .
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4. Separation of equations for physical degrees of freedom

For a better understanding of physical states in the model it is convenient to decompose the
ten gravitational fields hµν in terms of a traceless-transverse tensor, a transverse vector and scalar
components [5, 12],

hµν = bµν +Fµ,ν +Fν ,µ +E,µν +ηµνψ, (4.1)

where bµν and Fµ obey the relation b,µµν = bµµ = 0 = F ,µ
µ . Obviously, the gravitational fields bµν

are gauge invariant and thereby describe graviton fields in the 4-dim space.
Using the parametrization (4.1) we can calculate components of the quadratic action,

L(2) =
1
8

M3
∗A3

{
bµν ,σ bµν ,σ − (b′)µν(b′)µν − fµν f µν

}
+

3
4

M3
∗A3

{
−ψ,µψ ,µ +ψ,µS,µ +2(ψ ′)2 +4

A′

A
ψ ′S
}

+
1
2

A3
{

ϕ,µϕ ,µ − (ϕ ′)2 −A2 ∂ 2V
∂Φ2 ϕ 2

−1
2

A2V (Φ)S2 +4ψ ′Φ′ϕ +S
(
−Φ′ϕ ′+A2 ∂V

∂Φ
ϕ
)}

+
3
4

M3
∗A3 �(E ′−2η)

(A′

A
S+ψ ′+

2
3M3

∗
Φ′ϕ

)
, (4.2)

where fµ ≡ F ′
µ − v⊥µ , fµν ≡ fµ,ν − fν ,µ . Obviously, in the quadratic approximation graviton,

gravivector and graviscalar are decoupled from each other. From the last line it follows that the
scalar E ′ is a Lagrange multiplier and generates a gauge-invariant constraint,

A′

A
S+ψ ′ =− 2

3M3
∗
(Φ′ϕ). (4.3)

Thus taking this constraint into account and with the further choice of a gauge, only one indepen-
dent scalar field remains.

5. Scalar sector in gauge ϕ = 0

This gauge in fact can be related to the choice of gauge invariant variables. After substitution
of the decomposed fluctuation metric tensor and assuming that ϕ = 0, one can represent the scalar
part of the lagrangian (4.2) as a sum of noninteracting contributions: tensor, vector and scalar parts,

L(2)(vµ = ϕ = 0) = Lb +L f +LS,ψ , (5.1)

where √
|g|Lϕ=0 =

3
4

M3
∗A3
(
−ψ,µψ ,µ +2(ψ ′)2 +ψ,µS,µ +4

A′

A
ψ ′S+

2(A′)2 +AA′′

2A2 S2
)
. (5.2)

In its derivation the identity M3
∗(A

3)′′ = −2A5V (Φ) is used, and integration by parts is performed
in the action.
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For the normalization of the kinetic term it is useful to redefine the field ψ = Ω−1ψ̂ ,

√
|g|Lψ = ψ̂,µ ψ̂ ,µ − ψ̂(−∂ 2

z +V (z))ψ̂, V (z) =
Ω′′

Ω
. (5.3)

The equations (5.3) describe the quadratic action for scalar particles, branons and allow to calculate
their mass spectrum.

To simplify analytical calculations let’s proceed to the gaussian normal coordinates xµ ,y,

ds2 = A2 (z)
(
dxµdxµ −dz2)= exp(−2ρ (y))dxµdxµ −dy2. (5.4)

In these coordinates and after redefining , ψ̂ = exp(−ρ/2)ψ̃ and exp(−ρ)ψ̃m = Ψm, the equation
for the mass spectrum has a form,(

−∂ 2
y +V (y)−m2 exp(2ρ)

)
Ψm = 0, (5.5)

V =
1
4

ρ ′2 − 1
2

ρ ′′+
ρ ′

exp(−3ρ/2)Φ′
(
∂ 2

y −ρ ′∂y
)(exp(−3ρ/2)Φ′

ρ ′

)
, (5.6)

where D̂yψ̃m =m2ψ̃m. One can see that the existence of a state with mass m depends on an existence
of zero-mode in the potential Ṽ =V −m2 exp(2ρ).

These formulas allow to calculate the spectrum of quadratic fluctuations of the boson field
minimally interacting to gravity.

6. Branon mass spectrum in the theory with potential ϕ 4, induced by
five-dimensional fermions

Let us study the formation of a brane in the theory with ϕ 4 potential and with the wrong-sign
mass term, which are presumably induced by self-interacting of five-dimensional fermions [10]
and admit a kink-type solution. The effective action has the form,

Se f f (Φ,g) =
1
2

M3
∗

∫
d5X

√
|g|
{
−R+2λ +

3κ
M2

(
∂AΦ∂ AΦ+2M2Φ2 −Φ4)} , (6.1)

where the normalization of the kinetic term of scalar fields κ is inherited from the low-energy
effective action of composite scalar fields and reflects the dynamics of fundamental interaction of
five-dimensional pre-fermions [10]. In our case, we assume that κ is a small parameter, which
characterizes the interaction of gravity and matter fields.

We use the warped metric in gaussian normal coordinates,

ds2 = exp(−2ρ (y))dxµdxµ −dy2. (6.2)

After variation of the action (6.1) in respect to the metric gAB and to the scalar field we obtain a
system of three equations,

Φ′′ =−2M2Φ+4ρ ′Φ′+2Φ3, (6.3)

ρ ′′ =
κ

M2 Φ′2, λ +6ρ ′2 =
3κ

2M2

{
Φ′2 +2M2Φ2 −Φ4} . (6.4)
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These equations contain terms which have different order in small parameter κ , and accord-
ingly they can be solved by perturbation theory assuming that, |ρ ′(y)|

M = O(κ) = |ρ ′′(y)|
M2 . Then in the

leading order in κ the equations for the field Φ(y) and the metric are,

Φ′′ =−2M2Φ+2Φ3 +O(κ) ,
ρ ′′

M2 =
κ

M4 Φ′2 +O
(
κ2) . (6.5)

The solution of these equations has the form of a kink, Φ0 = M tanh(My)+O(κ), and allows to
find the conformal factor,

ρ0 (y) =
2κ
3

{
lncosh(My)+

1
4

tanh2(My)+ tMy
}
+O

(
κ2) . (6.6)

We notice that in this order of the curvature κ solutions triggering an asymmetric brane are possible,
that corresponds to t ̸= 0. Later on we’ll show that in general such solutions are not possible in the
case of spontaneous creation of the brane, but become accessible if there is a manifest breaking of
the space symmetry,i.e. if there is a defect of the cosmological constant.

Let’s substitute the solutions of the equations of motion into the formula for calculation of the
mass spectrum (5.6). In the case of a symmetric (t = 0) brane it turns out that in this potential a
centrifugal barrier exists being located at zero and non-vanishing when gravity is switched off,

V (y, t = 0,κ = 0) = M2

(
4+

2
sinh2(My)

+8
1−4cosh2 (My)(

1+2cosh2 (My)
)2

)∣∣∣∣∣
y→0

∼ 2
y2 . (6.7)

Numerical calculations show that at the leading order in the gravitational constant there are neither
zero-modes, no resonances at m2 > 0. Thus, localized scalar states don’t exist near a symmetric
brane with potential (6.1) .

Next, let’s consider the case t ̸= 0, where the metric on both sides of the brane is different.
This solution seems to be possible in the leading order in κ . In this order we can calculate the mass
spectrum. The asymmetry parameter is assumed to be small as well which corresponds to the case
t ∼ 1. In the main approximation in κ the potential with asymmetric brane has the form (where
u = My),

V (t,κ = 0) = 2M2
(

2+
−12(1+ t2)cosh4 u+12t coshusinhu(1−2cosh2 u)+24cosh2 u−3

4(1+ t2)cosh6 u+4t cosh3 usinhu(1+2cosh2 u)−3cosh2 u−1

)
.

Numerical calculations show that at zero mass normalizable localized states don’t arise, but
localized states with nonzero mass arise when t > tmin, tmin = 0.21.... They are resonances,
since V −m2 exp(2ρ) exponentially decreases at infinity and the barrier is penetrable, although the
probability of its penetration is very small [10].

7. Asymmetric background solutions and a defect of the cosmological constant

For different asymptotics one must introduce an asymmetry in the cosmological constant
and/or break the symmetry under the reflection Φ →−Φ, which generates an asymmetry of kink-
type solutions of equations of motion in respect to y → −y. It can be implemented by adding a
defect to the action (6.1),

Lde f = 6κM3
∗Mη(y)Φ(X), (7.1)

6
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where η is a dimensionless function, which has the following limits η → η± when y →±∞. The
equations of motion with the defect read,

Φ0
′′ =−2M2Φ0 +4ρ ′Φ′

0 +2Φ3
0 +M3η , (7.2)

ρ ′′ =
κ

M2 Φ′
0

2
, λ +6ρ ′2 =

3κ
2M2

{
Φ′

0
2
+2M2Φ2

0 −Φ4
0 −2M3ηΦ0

}
. (7.3)

They imply that the cosmological "constant" should depend on y so that the relation were satisfied
on the solutions of the equations of motion,

2M2

3κ
λ ′+2M3η ′Φ0 =

(
(Φ′

0)
2 +2M2Φ2

0 −Φ4
0 −

4M2(ρ ′)2

κ

)′
−2M3ηΦ′ = 0.

This is guarantied if its (fixed) functional dependence of y coincides exactly with the solution
Φ0(y),

λ (y) = λ0 +3κM
∫ y

0
dy′η ′(y′)Φ0(y′), λ0 = const. (7.4)

If the defect is not constant, η ′(y) ̸= 0, the asymptotics of cosmological functions in the limit
y → ±∞ are in general different λ (y) → λ±. Turning back to the asymptotical forms and the
dimensionless quantities, Φ± = φ±M, k± = Mk̄±, λ± = M2λ̄± we obtain,

2k̄2 +
1
3

λ̄ =
κ
2
{

2φ2 −φ4 −2ηφ
}
, 0 =−2φ +2φ3 +η .

The equation for the field φ has three solutions, one of them (near φ = 0) realizes an unstable state,
it is a maximum. To calculate two other solutions, we assume η ≪ 1 and then obtain,

φ± =±1− η±
4
, 2k̄2

± =
κ
2
− 1

3
λ̄±∓κη±. (7.5)

Therefrom we find the relations between the asymmetry parameter t, the asymptotical form of the
defect and the cosmological function,

32
9

tκ2 =
1
3
(λ−−λ+)−κ(η++η−),

16
9

κ2(1+ t2) = κ − 1
3
(λ−+λ+)+κ(η−−η+)> 0.

Thus, the asymptotical form of the scalar matter defect and of the cosmological constant (λ−+

λ+)/2) completely determine the asymmetry of the conformal factor and of the cosmological func-
tion.

8. Conclusions

In this paper we have considered a model of domain wall ("thick brane") in the noncompact
five-dimensional space-time with asymmetric geometries on both sides of the brane, generated
by self-interacting fermions in the presence of gravity. The asymmetric geometry in the bulk is
provided by the asymmetry of scalar field potential and a corresponding defect of the cosmological
constant. In the model [10] with a minimal interaction of gravity and scalar fields for the symmetric
anti-de Sitter geometry there are no localized states in the vicinity of the brane. In the case of anti-
de Sitter geometries asymmetric against reflection of the fifth coordinate such states occur. When

7
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the exponent coefficients of a conformal factor for anti-de Sitter spaces on both sides of the brane
have different signs there exist only slowly decaying resonance. Asymmetric solutions on the
brane were obtained in the leading order of the expansion in a small parameter, corresponding to
the curvature of the bulk.

This work was supported by Grants RFBR 12-02-00859-a and by SPbSU grant 11.0.64.2010
as well as from Projects FPA2010-20807, 2009SGR502, CPAN (Consolider CSD2007-00042).
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