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Figure 1: Summary ofαs(MZ) in MS obtained from several methods. Those values refer to [2] andrecent
publications. The published world average presented in [2]is illustrated as blue dashed line (central value)
and blue band (uncertainty). The red dashed line and band denote the result except for lattice calculation.
The green squares denote the results in an analysis using data-set of deep-inelastic scattering data and HERA
data quoted in [3]. Those results do not contain theoreticaluncertainties. The recent results from OPAL [4]
(the green diamonds) using NNLO and NNLO+NNLA calculation,and from LEP [5] and Tevatron [6] (the
green upper-triangles) are also shown.

1. Introduction

Strong coupling constantαs is one of the most important fundamental parameter of quantum
chromodynamics (QCD). QCD is successful to describe the strong dynamics related to quark-
gluon interaction with just a few input parameters,αs and quark mass. Indeed this theory provides
highly consistent results with high-energy experimental measurements using perturbative and non-
perturbative calculation such as lattice QCD or operator product expansion (OPE). High precision
determination ofαs plays an important role in theoretical prediction of the Standard Model (SM)
and the new physics search at extremely high-energy experiments. Recently Higgs production
experiment at LHC [1] requires less than 0.5% precision ofαs to keep the accuracy similar to the
electroweak contribution since 7%–8% uncertaities of gluon fusion diagram is dominated from the
uncertainties ofαs and parton distribution function for 125 GeV Higgs mass.

The current world average ofαs has been published in 2009 [2] asαs(MZ) = 0.1135±0.0007
which is evaluated by combination of the measurement of e+e− annihilation,τ decay and lattice
QCD calculation (see Figure 1). Note that the central value of αs certainly leads to the preciseness
of lattice calculation in which its accuracy has already reached to the five-digit precision, and
indeed if lattice result is made excluded from it, the central value shifts about 30% and such error
increases by 50% [2].

To obtainαs, one needs an ingredient of dimensionless quantity which isknown as the per-
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turbative expansion is converged at sufficiently high energy scaleQ where is enough controlled by
the power rawO(ΛQCD/Q) contributions. ConventionallyRi denotes such quantity corresponding
to the physical observablei, for example in the case ofτ decayRτ is chosen to be hadronic branch-
ing ratio and also in the case ofe+e− annihilationRi is chosen to be thei-jet production cross
section divided by total cross section. In these cases the appropriate energy scale for convergence
of perturbative expansion depends on the observable. ForRτ which provides the precise determi-
nation ofαs from experimental measurement, the energy scaleQ = Mτ = 1.78 GeV corresponds
to αs(Mτ) ≃ 0.33 where the unknown non-perturbative effect from the estimate based on OPE at
Q = Mτ may be about 7%, and when taking toQ = MZ about three factor of such uncertainty de-
creases because relative error of running coupling constant can be described as∆αs/αs ∼ αs. In
this case theoretical uncertainties can be rather efficiently suppressed by a few % level than other
high energy experiments (in which about 5% theoretical uncertainties remain).

In lattice QCD there are many choices ofR as short distance observable. The energy scale
we can choose is allowed for broad range belowQ ≃ O(π/a) by the lattice cut-offa−1 which is
provided by the simulation parameterβ regarding the bare gauge coupling. Presently thanks to
the great development of computational algorithm and equipment (supercomputer) lattice QCD
simulation makes progress into one of the most reliable theoretical calculation of QCD based on
the first principles. Full QCD simulation including sea quarks of degenerate light (up-down) flavor
plus strange has been established, and now the new simulation with sea charm quark becomes
routine. As a consequence lattice calculations ofαs has reached toward five-digit precision area,
which is a few % uncertainty compared with estimate fromτ decay measurement.

In this proceedings I first show the recent work in JLQCD collaboration adopting Adler func-
tion to dimensionless quantityR in lattice QCD, and next I briefly explain the other lattice works
and compare these results.

2. Adler function and vacuum polarization function

Conventionally Adler functionD is defined by the derivative of hadronic vacuum polarization
function (VPFs)ΠJ(Q2) with respect to the Euclidean momentum squareQ2:

D(Q2) = −Q2dΠJ(Q2)

dQ2 (2.1)

which has been known as scheme-independent quantity calculated by the perturbation at NNLO
(O(α3

s )) [7, 8] and N3LO (O(α4
s )) [9]. The ingredientΠJ is given by the spin-expansion of non-

singlet vector or axial-vector current correlator as

〈Ja
µJb

ν〉(Q) = δ ab
[

(δµνQ2−QµQν)Π(1)
J=V,A −QµQνΠ(0)

J=A

]

(2.2)

where the superposition indicates the corresponding spin of state, for exampleΠ(1)
J is associated

with ρ(J = V ) anda1(J = A) meson pole,Π(0)
A is associated withπ,a0 poles, at low energy re-

gion. At high energy region, where is equivalent to deep Euclidean region, we can reproduce the
perturbative formula forΠJ from Adler functionD when the renormalization scheme is chosen. In
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general operator production expansion (OPE) describesΠJ as

ΠV+A|OPE(Q
2,αs) = c+C0(Q

2,µ2,αs)+CV+A
m (Q2,µ2,αs)

m̄2(Q)

Q2 + ∑
q=u,d,s

CV+A
q̄q (Q2,αs)

〈mqq̄q〉

Q4

+ CGG(Q2,αs)
〈(αs/π)GG〉

Q4 +O(Q−6) (2.3)

with analytic formulaC0 from MS scheme atO(α2
s ) [10] andO(α3

s ) [11, 12],Cm from MS scheme
atO(α2

s ) [13], CX=q̄q,GG is Wilson coefficient of non-perturbative quantity for operator condensate
〈X〉 [14]. c denotes the scheme-dependent constant which vanishes in Adler function.

3. Strong coupling constant from VPFs on the lattice

Here I would like to show the recent results using the Adler function computed by VPFs in
lattice QCD with overlap fermion.

3.1 Lattice formula in the exact chiral fermion

VPFs can be defined as the same way as continuum theory (2.2) onthe lattice if vector or
axial-vector current is satisfied with Ward-Takahashi (WT)identity. If not, we should take into
account the lattice artifact due to violation of current conservation. In overlap fermion formulation,
which is defined as lattice fermion with the exact chiral symmetry on the lattice, there is an exact
definition of conserved current:

V a,cv
µ (x) = ∑

w,z
q̄(w)taKµ(w,z|x)q(z), Aa,cv

µ (x) = ∑
w,z

q̄(w)taKµ(w,z|x)[γ̂5q](z), (3.1)

whereKµ(w,z|x) is defined as the kernel of conserved current whose explicit formula is described
in [15, 16]. The current-current correlator used in both conserved ones are computationally hard
to construct because of non-locality of the inverse ofhW among the two operator, unless all-to-
all quark propagator is employed. However the mixing correlator with local-conserved current,
〈Ja,cv

µ (x)Jb,loc
ν (y)〉 with Ja,loc

µ (x) = q̄taγµq, does not matter to computational construction on the
lattice. This current-current correlator is satisfied withWT identity for one side,

∑
µ

Q̂µ〈V
a,cv
µ V b,loc

ν 〉(Q) = 0, ∑
µ

Q̂µ〈A
a,cv
µ Ab,loc

ν 〉(Q)−2mq〈P
aAb,loc

ν 〉(Q) = 0, (3.2)

whereaQ̂µ = sin(aQµ) is momentum definition corresponding to the backward derivative operator
∂ x∗

µ . The second term of AWT in (3.2) represents the correlation function of the pseudo-scalar

density operatorPa(x) = q̄(x)taγ5(1−Dov/m0)q(x) and the local axial-vector currentAb,loc
ν (y). A

possible term arising from the axial transformation ofJb,loc
ν (y) (J = V or A) vanishes when we take

the vacuum expectation value, since the vacuum has axis-interchange symmetry while the indexν
remains inJb,loc

ν (y).
The vector and axial-vector VPFs are now given by [16]

〈Ja,cv
µ Jb,loc

ν 〉(Q) = δ ab
[

(δµνQ̂2− Q̂µQ̂ν)Π(1)
J (Q)− Q̂µQ̂νΠ(0)

J (Q)+ ∆J
µν(Q)

]

. (3.3)
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Here,Π(0)
V (Q) vanishes because of the conservation ofV a,cv

µ , while Π(0)
A (Q) represents a remnant

due to PCAC:

Π(0)
A (Q) = −2mq〈P

aAa,loc
ν 〉(Q)/(Q̂2Q̂ν). (3.4)

(Repeated indicesa’s are not summed.) The transverse partΠ(1)
J (Q) can be extracted as

Π(1)
J (Q) = 〈Ja,cv

µ Ja,loc
µ 〉(Q)/(Q̂2− Q̂µQ̂µ), (3.5)

(repeated indicesµ ’s are not summed) if one ignores the additional term∆J
µν(Q), which reflects

the violation of the current conservation of the local current Ja,loc
ν . Since the current conservation

is recovered in the continuum limit, this term can be expanded in terms of smallaQµ as

∆J
µν(Q) = ∑

m,n=1

(

δµν ∑
ρ

Q̂2m
ρ − Q̂2(m−1)

µ Q̂µQ̂ν

)

Q2n
ν Fmn(Q̂), (3.6)

whereFmn denotes the scalar function depends on the indexm,n and momentumQ. It satisfies
the condition∑µ Q̂µ∆J

µν(Q) = 0 coming from the WT identity forJa,cv
µ . Fortunately the numerical

investigation suggests the corresponding lattice artifact is tiny contribution to VPFs [16, 18] rather
than the case when local-local current is used [19].

3.2 αs from VPFs

OPE formula in Eq.(2.2) is applicable to use as a fitting function with data of VPFs extracted
from current-current correlator in Eq.(3.4) and Eq.(3.5) ignoring the∆J

µν . Since the value of the
operator condensate of gluon can not be independently determined from direct lattice calculation
due to renormalon ambiguity [20], we treat it as a free parameter as well asc, otherwise the quark
condensate is deterministic in lattice QCD unless the chiral symmetry does not broken on the
lattice. The coupling constant is given byΛMS in the perturbative expansion up toO(α4

s ) [21, 22].
Thus three free parameters (c, 〈GG〉, ΛMS) are required in this fitting when overlap fermion is
adopted.

JLQCD collaboration has curried out the calculation with overlap fermion in dynamical light
quark (degenerate up-down) and strange quark in the 163×64 lattice ata−1 = 1.83(1) GeV [16].
Figure 2 shows thatχ2 fitting has well quality of describing lattice VPFs with OPE formula as a
function of Q̂2 in a whole quark mass. Actually after dealing with correlated fit between different
momenta the value ofχ2/dof is 1.7 with carefully constrained momentum range.

Mainly there are two sources possibly including as systematic error into this calculation. The
details refer to description in [16].

• At small (aQ̂)2, truncation effect in higher order thanO(Q−6) in OPE may be significant.
Figure 3 indicates that in low(aQ)2 region from 0.4–0.5 the behavior of higher order operator
can be observed.

• At large(aQ)2, the contribution of∆µν in Eq.(3.6) does not ignore. In [16] that is taken into
account by investigation with lattice perturbation (see Fig.3) and comparison between data
of µ = ν andµ 6= ν (see Fig.4). The systematic error is conservatively evaluated from these
estimate.
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Figure 2: (aQ)2 dependence of VPF,ΠV+A(Q), at all valence quark masses:mq = 0.015 (circle), 0.025
(square), 0.035 (diamond), and 0.050 (triangle), evaluated in overlap fermion using 2+1 flavor in 163×64
[16]. Top panel is a result atms = 0.08 while the bottom is atms = 0.10. Solid curves show a fit function
at each quark masses. Filled symbols are the points for whicheach momentum component is equal to or
smaller than 2π/16 in the lattice unit.

After taking account of other systematic uncertainties as determination of lattice spacing, renor-
malization factor (for local current, quark mass) and physical mass ofmc,b, we obtain

α(5)
s (MZ) = 0.1181(3)(+14

−12). (3.7)

The main uncertainty is due to large difference of lattice spacing from determination usingfπ and
Ω mass [23, 16], however this may be reduced as soon as possiblewhen the precise simulation
using more accurate parameter (larger lattice volume etc.)is available in near future [24].

4. Other lattice calculations of strong coupling constant

Here I will introduce the results of other lattice method. Wefind the brief overview of current
lattice status in the literature [25].
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Figure 4: (Left) (aQ)2 dependence of one-loop VPFΠJ=V,A(Q2) in lattice perturbation theory. Dashed
line shows the leading logarithm term plus a constant, whichcorresponds to the continuum perturbation
theory. Solid lines show the function including lattice artifact of O((aQ2)). The shaded band represents an
uncertainty due to the higher order effects. The red diamonddenotes the value at the upper limit of our fit of
VPF. (Right) Difference betweenΠdiag

V (Q) andΠoffd
V (Q) at all valence quark massesmq = 0.015 (circles),

0.025 (squares), 0.035 (diamonds), and 0.050 (triangles). Top panel of right figure is the result atms = 0.08
and the bottom one is inms = 0.10.

4.1 From Wilson loop with lattice perturbation

The perturbative expansion of Wilson loops with some kinds of loop-path shape provides the
value of strong coupling constantαV [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36] as

− lnWm,n = ∑
i=1

c
(N f )
i (m,n)

[

α(N f )
V (q∗m,n)

]i
(4.1)

by the comparison between the light-hand-side which is provided from Wilson loop forn×m or
non-planer paths in lattice Monte-Carlo simulation, and the right-hand-side in whichc

(N f )
i (n,m) is

given by computation of Feynman diagram in lattice perturbation. The scaleq∗m,n is the average
momentum of gluon, and this value has been usually used in evaluation from the one-loop gluon
contribution to Wilson loops [28], however more robust procedure of scale setting incorporating
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Figure 5: (Left) History of theα(5)
s (MZ) vale from short-distance quantity of Wilson loop on the lattice. I

represent the number of dynamical quark flavor used in the Monte Carlo calculation of Wilson loops asN f .

(Right) α(5)
s (MZ) from 22 different Wilson loops determined by HPQCD collaboration [36].

higher order contribution is available in [37], and thus conventionally in Ref.[33, 35, 36] the no-
tation of this scale is distinguished asq∗m,n → d/a. To convert the conventionalMS scheme, the
perturbation formula using static-quark potential at third order [38] is available

α(N f )

MS
(Q) = α(N f )

P (e5/6Q)
[

1+
2
π

α(N f )
P + XMS(α

(N f )
P )2 +O((α(N f )

P )3)
]

, (4.2)

α(N f )
V (Q) = α(N f )

P (Q)
[

1+ α2
P(1.86−0.45N f + XMS)+O(α3

P)
]

, (4.3)

where the value ofXMS has been known asXMS ≃ 0.95 [31, 32] for quenched QCD.
Since starting in Ref.[26] the procedure of lattice calculation of αs with Wilson loop, the

precision has become higher and higher. We can find the results of α(5)
s (MZ) in N f = 0 [26, 29],

N f = 2 [29, 31, 32] andN f = 3 [33, 34, 35, 36] (see Fig. 5). The recent result in [36] is given by

α(5)
s (MZ) = 0.1184(6), (4.4)

from combining the 22 determinations of coupling constantsevaluated from Wilson loops and
lattice perturbation at NNLO (c(3)

n≤3) plus simultaneous fitting result from different lattice spacing

c(3)
4,5 (see Fig.5).

4.2 From moment of heavy quark current-current correlators

Determination ofαs from moment of heavy quark current-current correlator is similar idea
to determination ofαs from VPFs as explained in section 3.2. Here dimensionless ingredient is
defined as

Gn ≡ ∑
t

( t
a

)n
G(t), G(t) = a6∑

~x

(am0h)
2〈0| j5(~x, t) j5(0,0)|0〉, (4.5)

whereGn corresponds to coefficient at(n−2)/2th order of Taylor series for vacuum polarization
Πp(q2), which is defined asi

∫

dxeiqx〈0|T j5(x) j5(0)|0〉 = q2Πp(q2), around zero external momen-
tum. Conventionally in Ref.[39, 36] they define dimensionless “reduced moment” as the ratio of
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tree level moment:

Rn =







G4/G(0)
4 for n = 4

amηh

2am(0)
pole,h

(Gn/G(0)
n )1/(n−4) for n ≥ 6 , (4.6)

in which the denominator is used to be the lowest-order moment of lattice perturbation, andm(0)
pole,h

is the lowest-order of c-mass, which is related to bare heavyquark massam0h [39]. Reduced
moment is equivalent to continuum quantities up toO((amh)

mαs):

Rn =

{

g4(αs(µ),µ/mh)/g(0)
4 for n = 4

mηh
2mc(µ)

(

gn(αs(µ),µ/mh)/g(0)
n

)1/(n−4)
for n ≥ 6

+O((amh)
mαs), (4.7)

and thereforeαs andmh(µ) can be evaluated by using the equivalence between lattice calculated
Rn andgn in continuum perturbation theory at NNLO [40, 10] up ton = 62 and N3LO [11, 41, 42]
up ton = 10 (wheren represented in here is equivalent to(n−2)/2th moment). The exponentm
will take m = 2,4· · ·, which depends on the order of moments.

HPQCD collaboration have performed the above procedure to calculatemc,b andαs using up
to n = 30 [36] in simultaneous fit combined with exact coefficients in N3LO perturbation theory
and fitting with free parameters, and thus they obtained

α(5)
s (MZ) = 0.1183(7), (4.8)

and alsomc(3GeV) = 0.986(6) GeV for N f = 4 andmb(10GeV) = 3.617(25) for N f = 5.

4.3 From step scaling function in Schrödinger functional scheme

ALPHA collaboration [43] have developed the new scheme for the calculation ofαs from non-
perturbative running coupling constant through step-scaling procedure. So called “Schrödinger
functional (SF) scheme” is fabricated by the step scaling function Σ(u) of renormalized coupling
constantu = ḡ2, which is given by the derivative of effective action with respect to the imposed
Dirichlet boundary field parametrized by real valueη (andν) in temporal direction [44, 45]. In
this procedure scaling the coupling constant follows the step scaling function at finite sizeL after
taking the continuum limit:

σ(u) = lim
a/L→0

Σ(u,L/a), Σ(u,L/a) = ḡ2(2L)
∣

∣

ḡ2(L)=u, (4.9)

where the second equation indicates the new renormalized coupling constant ¯g2(2L) obtained at 2
times scale-up from the old renormalized coupling constantḡ2(L) at fixed lattice spacinga. σ(u) is
evaluated by the continuum extrapolation forΣ(u,L/a) using several lattice spacing (bare coupling
constants) (see Fig.6). When obtaining theσ(u) from starting maximum scaleµmax = 1/Lmax

into perturbative region, theΛ-parameter in SF scheme is given by the exact solution of Callan-
Symanzik equation

ΛSF = µ(b0ḡ2(µ))−b1/(2b2
0)e−1/(2b0ḡ2(µ)) exp

{

−

∫ ḡ2(µ)

0
dx

[ 1
β SF(x)

+
1

b0x3 −
b1

b2
0x

]}

(4.10)

with µ = 2i/Lmax. In fact, the lattice result of a non-perturbative step scaling function has been
well consistent with three-loop perturbation theory at weak coupling region (see Fig. 6).β SF(x)
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Figure 6: (Left) Continuum extrapolation of step scaling functionΣ(u,L/a) defined in context starting from
u = 5.5 [45]. (Right)σ(u)/u as a function ofu obtained from Schrödinger functional scheme inN f = 2
[45], N f = 3 [46] andN f = 4 [47]. The solid lines denote the comparison with the perturbation at 3 loop
order calculated in [44].

denotes the beta function, whose perturbative form has beenknown as series of up to 3-loop coef-
ficients in SF scheme,b0 = (11−2N f /3)/(4π)2, b1 = (102−38N f /3)/(4π)4, bSF

2 = (0.483(7)−

0.275(5)N f + 0.0361(5)N2
f −0.00175(1)N3

f )/(4π)3 [44]. Note that in this scheme it is necessary
to determine the maximum sizeLmax through the renormalized coupling constantumax = ḡ2(Lmax)

where is above the inverse of hadronic scale (µ−1
hadron≪ Lmax), for instance, associated with,Lmaxfπ ,

Lmax/r0 [45] or determined lattice spacinga from hadron mass [46] which has been separately ob-
tained in large scale simulation and therefore it will be sensitive to determination of lattice spacing.
After conversion intoΛ(N f )

MS
with perturbative formula,α(5)

s (MZ) quoted in [46] is given as

α(5)
s (MZ) = 0.1205(9)(+0

−17), (4.11)

where the first error is estimated by the quadrature of uncertainties of statistical and systematic
coming from perturbative matching of different flavor, and otherwise the second one is due to
lattice spacing uncertainty.

4.4 From vertex function of gluon and ghost interaction

Basically from non-perturbative computation of the two-, three-gluon or gluon-ghost vertex
functionαs can be straightforwardly derived as a function of external gluon momenta. In Ref.[55,
56, 57, 58, 59, 60, 61] we find several attempts of computing vertex function under gauge fixed
configurations with some kinds of flavor of dynamical fermion.

5. Summary

Figure 7 shows the summary of recent published result ofα(5)
s (MZ) with several schemes in

lattice QCD as explained in the previous sections. It is obviously consistent with each value ob-
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tained in different lattice action and scheme. Assuming that these results are independent between
each other, the combined value ofα(5)

s (MZ) is evaluated as

α(5)
s (MZ) = 0.1186(+7

−4), (5.1)

without correlation among them. Its central value is excellently agreement with world average
within 1 σ error, and its accuracy is also compatible with that. To pursue the further high precision
αs below 0.5% accuracy, the control of the following uncertainties has already become routine:

• Perturbative matching whereQ = mc and mb: To take the coupling constant obtained in
N f = 2+ 1 (or N f = 3) dynamical simulation intoQ = MZ, it is necessary to incorpo-
rate contamination of vacuum polarization of heavy quark into running coupling constant
corresponding threshold near its renormalized mass (mc or mb). Ordinarily it is useful to
match running coupling constant between different flavor asN f = 3→ 4(4→ 5) at thresh-
old Q = mc(mc) (mb(mb)) using decoupling relation in perturbation formula up to N3LO
O(α3

s ) [48, 49, 50], however there remains additional effect coming from higher-order trun-
cation. Basically implementation of lattice Monte-Carlo simulation including dynamical
charm quark (moreover bottom quark if we can control large lattice artifactO(amb)) will be
the most rigorous treatment of heavy quark effect without depending on perturbative expan-
sion.αs including charm see quark effect will be available from the several on-going projects
[51, 52, 53].

• Uncertainty of lattice spacing: Since the ingredient ofR is dimensionless quantity, calcu-
lation of αs at proper scale on the lattice is nothing to do with the determination of lattice
spacing, however in order to compare other results at different scale or perform the perturba-
tive matching at particular scale it becomes significant. The lattice spacing specified in the
bare coupling constant is determined from a physical observable like pion decay constant,
omega baryon mass or heavy quark potential. Although in thismanner the accuracy of such
physical observable obtained in the same parameter space isimportant, there are slightly
large systematic division among different physical inputs. This issue will be overcome by
large scale simulation close to realistic pion mass (∼ 140 MeV) and physical volume (∼ 4
fm3) in the near future.

Presently the determination ofαs in lattice QCD has been established, and the prospect of future
lattice calculation may lead to further precision compatible with electroweak coupling constant.
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