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The effects of the axial anomaly are suppressed at high tertypes due to screening effects
in the quark-gluon plasma. If the suppression is nearly detaglose to the chiral transition
temperature, this can have consequences for the nature ph#tse transition. The use of a chiral
action such as Domain Wall Fermions allows us to gain a deapigiht into the issue. Our lattice
sizes were 18x 8 x Ls, with Ls = 32 or 48, and our pion mass was approximately 200 MeV. We
found thatJ (1) o stayed broken above the chiral transition. However theldimgavas found to be
due to topologically nontrivial configurations which ragsbe question as to whether it persists in
the thermodynamic limit. We also present results for themiglue density of the Dirac operator.
Itis seen that although the density decreases dramata@iss the chiral transition temperature,
U (1)a still remains broken at our current volume and quark masstduke presence of zero
modes.
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1. Introduction

The Lagrangian of Quantum Chromodynamics (QCD) withmassless flavors of quarks
is invariant under a globa@U(Nf). ® SU(Nf)r®@ U (1)y ® U(1)a symmetry. In the vacuum, the
SU(N¢)L ® SU(N¢ )g chiral symmetry is spontaneously broken ®@(N¢ )y subgroup, correspond-
ing to flavor symmetry. This spontaneous breaking of chiral symmetry gse$o a nonvanishing
expectation valuégy) of the chiral condensate.

The axialU (1) symmetry of the QCD Lagrangian on the other hand is broken by the axial
anomaly. The inclusion of quantum fluctuations leads, at the perturbatiet itself, to non-
conservation of the axial current; this is the famous Adler-Bell-Jackiwreahp[1, 2]:

. (of
(0ui%) = — 4 (" PYRGpF). (1.1)

In QCD, the anomaly implies global non-conservation of axial chargeveNaiintegrating
Eq. (1.1) over all spacetime should give zero since the left-hand sidetel diteergence. However
there exist special gauge field configurations in QCD for which the intefthe right-hand side
is not zero. These are the configurations with nontrivial topology [8]séch configurations must
be included in the path-integral. Anomalous contributions arise for anynedise for which the
contribution from such configurations is unsuppressed.

1.1 Effective U(1)a Restoration

A common example of a phase transition in several finite-temperature field théorilkee
restoration of a spontaneously broken global symmetry. This is the casehiigh symmetry in
QCD as well. FoNt = 2 in the massless limit, the phase transition is expected to be second-order
and belonging to th®(4) universality class. When the quarks are massive, this transition becomes
a crossover.

By contrast axial symmetry is broken at the perturbative level itself. & lsthus no question
of its complete restoration at any temperature. However as we have afeadyanomaly-related
effects arise from the existence of topologically nontrivial configuratiomhe action for these
configurations is proportional tag?. Such actions are therefore Boltzmann-suppressed due to
the screening of the coupling constant at high temperatures [4]. Alththegb is always some
amount ofU (1) breaking belowl = o, it is conceivable that this suppression is nearly complete
by some temperature that is not too high. We may then speakeffeativerestoration of the axial
symmetry.

If this temperature is close to the chiral phase transition temperatut@en the effective
restoration olJ (1)a can have interesting phenomenological consequences. The staiciard p
of a second-order phase transition is based on the assumptidd (that breaking is substantial
nearT..! If this is not the case, then the phase transition may even be first ordé&hj8rstanding
the contribution ofJ (1), is thus essential to mapping the phase diagram of QCD.

INote that the chiral condensa®@ ), which signals chiral symmetry breaking, also bredk$),. Consequently
there is no question &f (1) being restored befor8U(2)| x SU(2)r is.
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2. Domain-Wall Fermionsand DSDR

Chiral symmetry restoration and effectity(1)4 restoration at high temperatures are both
non-perturbative phenomena whose reliable study demands the usepeftuwbative techniques.
Currently, lattice QCD is certainly the most viable and reliable such techniguensgive lattice
QCD studies of chiral symmetry restoration have already been carrigfbouat review and sum-
mary see [6, 7]). The question Of(1), restoration too has been investigated before [8, 9, 10, 11].

However such studies have almost always been carried out with stalgfgemions. For these
fermions the issues of chiral symmetry, the anomaly and the relation betweandimly and the
index theorem are very subtle [12, 13, 14]. Hence further studieg dsferent fermion discretiza-
tion schemes are certainly welcome.

Domain Wall Fermions are a fermion discretization scheme that preserves|tB&JfN; ), x
SU(N¢)r chiral symmetry of continuum QCD and also reproduces the correct dp@wven at
nonzero values of the lattice spacing [15]. The domain wall formulation i®bfiee-dimensional
fermions whose low-energy spectrum is four-dimensional and alsa) thlefifth dimension is in-
finite in extent, exactly chiral. The gauge fields remain four-dimensionatanple to the fermions
in the usual way. For finite fifth dimension, the residual chiral symmetrykimgamanifests itself
at low energies as an additive shiff.s of the bare quark mass [16].

The QCD phase transition has been studied before with domain wall fernignd§]. A
challenge encountered in the most recent study was the rapid variatios@s one moved to-
ward stronger coupling which made it difficult to keep the pion mass fixedu¢fmout the tem-
perature range studied [18]. The use of improved gauge actions subk bvasaki action results
in a smaller value o overall but cannot arrest the rapid growthrmts as the temperature is
decreased.

In an ongoing study of QCD thermodynamics using domain wall fermions by Hi®ED
collaboration [19],mes Was sought to be kept to a minimum through the use of the “Dislocation
Suppressing Determinant Ratio (DSDR).” The usual Iwasaki gaugenawas augmented with
a ratio of Wilson determinants which suppressed the zero modes (dislogatiahgontributed
to mes TO mMaintain adequate topological tunneling, the Wilson-Dirac mass was st tecthe
domain-wall height-Mg plus a small chirally twisted massy viz. [20, 21, 22]

det[D\J;V(fMo+i£f y{:,)Dw(fMo+i£f Vg,)}

: (2.1)
det[DJ\,(—MoJr i€hY5) Dw (—Mo -+ iEbVS)}

With this action we generated a few thousand configurations each at teemparatures be-
tween 140 MeV and 200 MeV. Our lattice sizes weré £@ x Ls with Lg = 32 for T > 160 MeV
andLs = 48 at lower temperatures. Before generating these configurationsenesaged several
zero-temperature ensembles at several values of the coypligh to set the scale and to deter-
mine the residual masges The input light and strange quark masses were then chosen so as to
keep the kaon physical and the pion mass fixed at 200 MeV fgB;athis defined our Line of
Constant Physics.

At each temperature, we measufgdp), (ys@) and the corresponding disconnected suscep-
tibilities. We also measured the flavored scal&)y, pseudoscala(m), vector(p) and axial vector
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(a1) correlators to be discussed below. Separately, we also measured tlgicglachargeQtop
for each configuration through the use of cooling and smeared galdeierators [23]. From
this we calculatedQop), (|Qiop|) @nd the topological susceptibilifiop. Finally, we also measured
the lowest hundred eigenvalues of the five-dimensional Dirac opemateach configuration in an
effort to determine the eigenvalue density distribut(@ ) (Section 5). The physics behind the
DSDR action, its performance and the results for the chiral phase trarsiti@been presented by
M. Cheng at this conference [24]. A complete description of our ensemnbdbale determination
and measurements is also forthcoming [19].
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Figure 1: The one-flavor disconnected chiral susceptibility for tiggatl quark. The transition region is
broad, as might be expected of a crossover, with a peakineat60 MeV.

Fig. 1 plots the disconnected chiral susceptibility as a function of the temperafbe sus-
ceptibility peaks at 160 MeV; accordingly we take that to be the approximéate ed the chiral
phase transition temperatufg Since the phase transition is expected to merely be a crossover for
my; > 0, this value only serves as a reference when discussing the possibilityL pf restoration.

3. Symmetries, Correlatorsand Susceptibilities

The influence of a symmetry is seen on the appropriate correlators of IDiragars. In the

SU@) X SU@) 4

54 N: a¥sd Xscon~ Xs5disc
SU@) Lx SU@) &

Figure 2: The symmetrieSU(N; ). x SU(Nf)r andU (1) relate mesons in different spin-flavor channels.
The above diagram summarizes these relationslfos 2.
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scalar-pseudoscalar sector, Ky = 2, we have two iso-triplet correlators:

Cs(x) = (ud(x) du(0)), (3.1a)
Cr(x) = (iuysd(x) idysu(0)), (3.1b)

Co(X) = < (Gu(x) + dd(x)) (Ou(0)-+dd(0)) > (3.22)

(iuysu(0) +idysd(0)) > (3.2b)

Cyr(X) = < (inysu(x) + idysd(x)

~—

The d andt correlators receive contributions only from diagrams with connectetkdinas and
are thus easier to measure. Thand then’ on the other hand receive contributions from diagrams
with connected as well as disconnected quark lines. The connectedftagse correlators are just
the d and therrrespectively. The full correlator however is obtained only after thisipaxanceled
by a similar contribution from the disconnected piece. This makesthedn’ correlators much
harder to measure.

These correlators transform into one another under a chiral or arrabdfion, as summarized
in Fig. 2. This implies for e.g. that the and theo () correlators become identical when chiral
(axial) symmetry is restored.

In addition to the correlators in eq. (3.1) we also calculated the connecteol \and axial
vector correlators viz.

Cp(¥) = (Oyud(x) dyu(0)),  Cay(x) = (ilysyud(x) idysy,u(0)). (3.3)

An axial rotation has no effect on the vector and axial vector corredatdihe two are in
fact related through chiral transformations and they become degemdratechiral symmetry is
restored. We plot these correlatorsTai= 150 MeV and 160 MeV in Fig. 3. Since the transition
is a crossover the two only become exactly identical at very high tempesaburethey are nearly
degenerate by = 160 MeV.
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Figure 3: The vector(p) and axial vectofa; ) correlators fofT = 150 MeV and 160 MeV respectively.

By integrating these correlators over the four-volume, we obtain thesmoneling suscepti-
bilities X7, X0, €tc. Just as for the correlators, one has connected and discahsesteptibilities
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depending on the type of correlator being integrated. Furthermore, tendiscted parts of the
andn’ susceptibilities are equal to the disconnected susceptibijtiesand xs gisc Viz.

Xo,disc= < (wan)2> - < (HIW) >2 = Xdisc and Xn' disc = < (WVSW)Z> = X5,disc (3.4)

The appropriate symmetry restoration gives rise to equalities among thedifersceptibilities:

Xn= X&+ Xdisc and X5 =Xn—Xsdise  |SU(2)L xSU(2)r]  (3.5a)
Xn=Xs and X5+ Xdisc= Xn— Xsdisc  |U(1)a]. (3.5b)

The differencey;— x5 must go to zero dd (1) breaking is suppressed. Eq. (3.5a) tells us that this
difference equalggisc once chiral symmetry is restored. Moreover, we see that chiral symmetry
restoration implies thakuisc = X5,disc Whereas axial symmetry restoration implies the opposite,
namely Xdisc = —Xs.disc Either way, wherboth chiral and axial symmetry are restored, one has
Xdisc= 0= Xs5.disc In other wordsU (1) restoration is signaled by a vanishing disconnected chiral
susceptibility.

200
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Xdisc/ T =
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Figure 4: The susceptibilitiexgisc, X5 disc and Xz — X5 for each of the temperatures. All are very nearly
equal fromT = 170 MeV onward. None of these susceptibilities vanishesliathe temperatures shown
here. The red and blue points have been horizontally disglag+1 MeV for clarity.

Fig. 4 plots these susceptibilities for each of the temperatures that we stédiledugh the
equalities derived in Egs. (3.5) are strictly valid only in the chiral limit, we seexfia, Xs discand
Xn— Xs are almost equal to each other from about 170 MeV onwards. Furthermane of these
susceptibilities is equal to zero evenTat 200 MeV, the highest temperature that we studied. If
we takeT; ~ 160 MeV, this would seem to suggest thHtl), remains broken even @t~ 1.25T..

4. The Correlation with Topology

Let us take a closer look at the sourcdqfl) violation. If we write therr andd correlators
(Egs. (3.1)) in terms of their left- and right-handed components, we get

Cs/n(x) = (ULdr(X)drUL(0)

o * o (4.1)
+ <U|_dR(X)d|_UR(0) + UrdL (X)dru (0) >
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Figure 5: (Left) The sum of thed andm correlators. The temperature increases from 140 to 200 MeV a
one moves downward along teaxis. (Right) The difference of the two correlators. Theperatures are
identified by the same symbols as in the plot on the left.

Here the left- and right-handed parts are defined as

w09 = (52 o, el = (152 ) uw.

= (152, k¥ = (5% a0o, (4.2)
and

a-ow(T58). - (F2),

a0 =d() (“2"5) , dr(¥) = d(x) <1‘2%> . (4.3)

In terms of these, our scalar and pseudoscalar correlators are
u(x)d(x) =0 (X)dr(X) +Ur(X)dL(X) and TU(x)ysd(X) = U (X)dr(X) — UR(X)d(X). (4.4)

A U (1) transformation is given by

6 R(X>e—i9’

o (x)e®, (4.5)

cl

uL () — e %u (), Ur(X) —
N

ur(x) — e %ur(x), UL (X)

and similarly ford(x). Looking back at Eq. (4.1), we see tHat1)a violation comes entirely
from the terms on the second line, which occur with opposite signs for thelatmrs. By contrast
the terms on the first line, which occur with the same sign for both correlamrsnvariant with
respect tdJ (1) transformations. From this it is clear that ti€1) violating and respecting parts
may be isolated by looking at thre— & and therr+ d correlators respectively.

We plot the sum and the difference of these two correlators in Fig. 5. Bhatthe difference
is of the same order of magnitude as the sum at the farthest separationd,(/2) for all the
temperatures shown here. This reaffirms our earlier observation {Rttatll (1), remains broken
even at the highest temperatures that we studied.
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Figure 6: Time histories of the integrated correlators (red lineg) tire topological charge (blue lines) for
T = 170-200 MeV. The topological charge histories have beguatied downward by 2-3 units for clarity.

Itis important to determine whether thig 1) breaking that we observe is due to the presence
of topologically nontrivial configurations or occurs merely becauseagtiark mass. The connec-
tion to topology is confirmed when we look at the time histories of these correlata compare
these with the time histories @p. Fig. 6 shows these time histories for four temperatures viz.
170, 180, 190 and 200 MeV. To remove the dependence on a partieplarasionx, we plot the
time histories of the integrated correlators vig, (1(x) — 8(x)) = m— 4. In all but a few cases,
the spikes int— & are found to line up with the jumps to nonzero values of the topology. In other
words,U (1) is broken not “on average” but rather by specific configurationsseHeequency
decreases as the temperature is increased.

5. The Spectrum of the Dirac Operator

The connection to topology is intriguing, but it also raises questions abeetdntual fate of
U (1) breaking. Nontrivial topologies are distinguished by the fact that thecliperator always
has a zero eigenvalue in their presefcghe contribution of these modes however vanishes when
the four-volume is sent to infinity i.e. in the thermodynamic limit.

2The Atiyah-Singer theorem constrains tliflerencebetween the number of left- and right-handed zero modes viz.
N; —N_ = Qop. Out of the totaN,. +N_ zero modes however, onfy;,op are stable with respect to small deformations.
A stronger statement therefore is that in the presence of a configureittomwinding numberQp, the Dirac operator
hasQop exactor robustzero modes.
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To see this, let us expre&g ) andx— X5 in terms of the eigenvaluesof the Dirac operator
viz.

o0 2 o

ww) = [ o m 20 (erl) (5.1a)
o 4n? 2(|Qto

Xn—Xes:/O d/\p(/\,m)(msz)ﬁ <1T?2tvp|>_ (5.1b)

The usual weighted average over gauge fields is re-expressedigsrage over eigenvalues dis-
tributed according to thepectral densityp(A,m). The second term on each RHS represents the
contributions of the exact zero modes [25]. The first term representtitributions coming from
the rest of the spectrum.

For large volumes, the topological charge is expected to obey a Gausstidpution with a
width proportional to the volume viz. [26]

P(Qtop) = (5.2)

1 eXp( Q? )
/ 2TXtopV 2XtopV |
Eq. (5.2) implies that|Qwp|) 0 v/V, hence the second terms in Eq. (5.1) vanisl as c.

U (1)a-breaking then must come from the rest of the spectrum i.e. from the firastef
Egs. (5.1). In the chiral limit the dominant contribution to these integrals cormes the eigen-
values within a small distance of the origin. This is similar to what happens wtieal symmetry
is broken: Eigenvalues ~ &(1/V) i.e. thenear-zeromodes, build up near the origin and it is
these, rather than the exact zero modes, that break chiral symmetryT}aig]is reflected in the
Casher-Banks relatiofyyy) = mp(0,0) for e.g. [28].

The spectral densitg(A, m), for smallA, can be determined by looking at the distribution of
the lowest eigenvalues of the Dirac operator with respect to the gaufjguations. For domain
wall fermions, the correct Dirac operator is the four-dimensional oneselexact form unfortu-
nately is unknown. However, since it is realized in the low-energy limit of the-dimensional
theory, its low-lying spectrum will be the same as that of the full five-dimergitreory upto
an overall renormalization factor which may also be determined non-patively. We show the
resulting histograms fop(A) in Fig. 7. These results, as well as details of the renormalization
procedure, have all been presented by Z. Lin at this conferenteaf29will also be described in a
forthcoming publication [19].

From Fig. 7, we see that the while the eigenvalue density at the origin slihiaksatically in
going across the chiral phase transition from 150 to 170 MeV, small eadygaw still occur with
reasonable frequency upto= 180 MeV. On the other hand, far= 190 and 200 MeV most of the
eigenvalues occur away from the origin. Nevertheless at both tempesdhere is also a second
set of eigenvalues that occurs close to the origin. It is these eigenvhlieare responsible for
U (1)a breaking.

Fig. 8 shows the correlation between the magnitude d)a breaking (i.e. the value of the
integrated correlatorr— &) and the value of the smallest eigenvalue for the Dirac operator on a
configuration-by-configuration basis. It is clear from the plot that fbser A, is to zero, the
larger the value oft— ¢ for that configuration. Furthermorgy,, is well-separated from zero for
the configurations witl@Q,, = 0. Accordingly for such configuratiorns— & is quite small.
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Figure 7: (Left to right, top to bottom) The renormalized eigenvalpecrum forT = 160 — 200 MeV.
These figures have been taken from [29]. The histograms ate ¥, which in the continuum is related

to the conventional Dirac eigenvaldeby A = /A2 + (m +mres)2. The leftmost line in each plot marks
the location ofA = m + mes. In the continuum, the eigenvalue density at that pointdgehe value of

P(0,m + Mees).

The dominant contribution tg; — X5 comes from the configurations wip # 0. As ex-
pected Amin is quite close to zero for these configurations. These eigenvalues éiosiall vanish
in the thermodynamic limit, and the magnitudelbfl) breaking afl = 200 MeV and 190 MeV
is likely to be much smaller than what we currently see.

6. Summary and Discussion

The question as to whethel(1), is restored at very high temperatures has a long history. As
already mentioned, such a restoration cannot be complete Aetew. Nevertheless its breaking

10
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Figure8: Scatter plot showing the correlation between d (y-axis) and the value of the smallest eigenvalue
Amin (X-axis) atT = 200 MeV on a configuration-by-configuration basiq, is related to the smallest

Dirac eigenvalue b\Amin = \//\2 +(m+ mres)z. The dotted vertical lines bracket the unphysical region

min
Amin < M +mes Open circles denote configurations Wiy, = 0 while bursts denote configurations with
Quop # 0. Configurations with large values @f— & are also those witlQp # 0, indicating thatJ (1)a
breaking at this temperature comes from the exact zero mbbtes that they-axis is logarithmic.

is very much suppressed at high temperatures and, depending on thitucheg@h suppression, it
could beeffectivelyrestored above some temperature. It is natural to ask whether this temperatu
is close to the familiar chiral transition temperature. In this work, we investigatedjuestion in

the context of the 2- 1-flavor theory, on the lattice, by working with a chiral action and examining
the behavior of the scalar and pseudoscalar iso-triplet correlators.

We found thatJ (1) remained broken even after the us8&l(2),. x SU(2)g chiral symmetry
had been restored. Moreover this was due to the presence of catiigswithQop # 0. Although
the proportion of such configurations in our ensembles decreasedtasiherature was increased,
the differencey,; — x5 was still nonzero at all our temperatures.

A study of the spectrum of the Dirac operator revealed that this breakiifegst at our highest
temperaturesT{ = 190 MeV and 200 MeV), resulted from the presence of zero modes winish
always arise whenever the underlying gauge configuratiorQags# 0. Unfortunately since the
density of the exact zero modes vanished/ad/2, whereV is the four-volume, the observed
breaking is unlikely to persist in the infinite-volume limit.

On the other hand, the density of thear-zero modeis an intensive quantity. It is these modes
that are responsible for keepikly1)a broken even after chiral symmetry has been restored. The
possible form of the spectral denspiyA , m) that yields(@@) = 0 but x,; — x5 # O is an intriguing
and currently open question.
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