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1. Introduction

The Lagrangian of Quantum Chromodynamics (QCD) withNf massless flavors of quarks
is invariant under a globalSU(Nf )L ⊗SU(Nf )R⊗U(1)V ⊗U(1)A symmetry. In the vacuum, the
SU(Nf )L⊗SU(Nf )R chiral symmetry is spontaneously broken to aSU(Nf )V subgroup, correspond-
ing to flavor symmetry. This spontaneous breaking of chiral symmetry givesrise to a nonvanishing
expectation value〈ψψ〉 of the chiral condensate.

The axialU(1)A symmetry of the QCD Lagrangian on the other hand is broken by the axial
anomaly. The inclusion of quantum fluctuations leads, at the perturbative level itself, to non-
conservation of the axial current; this is the famous Adler-Bell-Jackiw anomaly [1, 2]:

〈

∂µ jµ5〉=− αs

4π
〈

εαβγδ Fa
αβ Fa

γδ
〉

. (1.1)

In QCD, the anomaly implies global non-conservation of axial charge. Naively, integrating
Eq. (1.1) over all spacetime should give zero since the left-hand side is a total divergence. However
there exist special gauge field configurations in QCD for which the integral of the right-hand side
is not zero. These are the configurations with nontrivial topology [3]. All such configurations must
be included in the path-integral. Anomalous contributions arise for any observable for which the
contribution from such configurations is unsuppressed.

1.1 Effective U(1)A Restoration

A common example of a phase transition in several finite-temperature field theories is the
restoration of a spontaneously broken global symmetry. This is the case withchiral symmetry in
QCD as well. ForNf = 2 in the massless limit, the phase transition is expected to be second-order
and belonging to theO(4) universality class. When the quarks are massive, this transition becomes
a crossover.

By contrast axial symmetry is broken at the perturbative level itself. There is thus no question
of its complete restoration at any temperature. However as we have alreadyseen, anomaly-related
effects arise from the existence of topologically nontrivial configurations. The action for these
configurations is proportional toα−1

s . Such actions are therefore Boltzmann-suppressed due to
the screening of the coupling constant at high temperatures [4]. Althoughthere is always some
amount ofU(1)A breaking belowT = ∞, it is conceivable that this suppression is nearly complete
by some temperature that is not too high. We may then speak of aneffectiverestoration of the axial
symmetry.

If this temperature is close to the chiral phase transition temperatureTc, then the effective
restoration ofU(1)A can have interesting phenomenological consequences. The standard picture
of a second-order phase transition is based on the assumption thatU(1)A breaking is substantial
nearTc.1 If this is not the case, then the phase transition may even be first order [5]. Understanding
the contribution ofU(1)A is thus essential to mapping the phase diagram of QCD.

1Note that the chiral condensate〈ψψ〉, which signals chiral symmetry breaking, also breaksU(1)A. Consequently
there is no question ofU(1)A being restored beforeSU(2)L ×SU(2)R is.
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2. Domain-Wall Fermions and DSDR

Chiral symmetry restoration and effectiveU(1)A restoration at high temperatures are both
non-perturbative phenomena whose reliable study demands the use of nonperturbative techniques.
Currently, lattice QCD is certainly the most viable and reliable such technique. Extensive lattice
QCD studies of chiral symmetry restoration have already been carried out(for a review and sum-
mary see [6, 7]). The question ofU(1)A restoration too has been investigated before [8, 9, 10, 11].

However such studies have almost always been carried out with staggered fermions. For these
fermions the issues of chiral symmetry, the anomaly and the relation between theanomaly and the
index theorem are very subtle [12, 13, 14]. Hence further studies using different fermion discretiza-
tion schemes are certainly welcome.

Domain Wall Fermions are a fermion discretization scheme that preserves the full SU(Nf )L ×
SU(Nf )R chiral symmetry of continuum QCD and also reproduces the correct anomaly even at
nonzero values of the lattice spacing [15]. The domain wall formulation is oneof five-dimensional
fermions whose low-energy spectrum is four-dimensional and also, when the fifth dimension is in-
finite in extent, exactly chiral. The gauge fields remain four-dimensional andcouple to the fermions
in the usual way. For finite fifth dimension, the residual chiral symmetry breaking manifests itself
at low energies as an additive shiftmres of the bare quark mass [16].

The QCD phase transition has been studied before with domain wall fermions [17, 18]. A
challenge encountered in the most recent study was the rapid variation ofmres as one moved to-
ward stronger coupling which made it difficult to keep the pion mass fixed throughout the tem-
perature range studied [18]. The use of improved gauge actions such as the Iwasaki action results
in a smaller value ofmres overall but cannot arrest the rapid growth ofmres as the temperature is
decreased.

In an ongoing study of QCD thermodynamics using domain wall fermions by the HotQCD
collaboration [19],mres was sought to be kept to a minimum through the use of the “Dislocation
Suppressing Determinant Ratio (DSDR).” The usual Iwasaki gauge action was augmented with
a ratio of Wilson determinants which suppressed the zero modes (dislocations) that contributed
to mres. To maintain adequate topological tunneling, the Wilson-Dirac mass was set equal to the
domain-wall height−M0 plus a small chirally twisted mass iεγ5 viz. [20, 21, 22]

det
[

D†
W(−M0+ iε f γ5)DW(−M0+ iε f γ5)

]

det
[

D†
W(−M0+ iεbγ5)DW(−M0+ iεbγ5)

] . (2.1)

With this action we generated a few thousand configurations each at seventemperatures be-
tween 140 MeV and 200 MeV. Our lattice sizes were 163×8×Ls with Ls = 32 for T > 160 MeV
andLs = 48 at lower temperatures. Before generating these configurations, we generated several
zero-temperature ensembles at several values of the couplingβ both to set the scale and to deter-
mine the residual massmres. The input light and strange quark masses were then chosen so as to
keep the kaon physical and the pion mass fixed at 200 MeV for allβ ; this defined our Line of
Constant Physics.

At each temperature, we measured〈ψψ〉, 〈ψγ5ψ〉 and the corresponding disconnected suscep-
tibilities. We also measured the flavored scalar(δ ), pseudoscalar(π), vector(ρ) and axial vector

3



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
0
1
4

Looking for U(1)A Restoration Prasad Hegde

(a1) correlators to be discussed below. Separately, we also measured the topological chargeQtop

for each configuration through the use of cooling and smeared gauge field operators [23]. From
this we calculated〈Qtop〉, 〈|Qtop|〉 and the topological susceptibilityχtop. Finally, we also measured
the lowest hundred eigenvalues of the five-dimensional Dirac operator on each configuration in an
effort to determine the eigenvalue density distributionρ(λ ) (Section 5). The physics behind the
DSDR action, its performance and the results for the chiral phase transitionhave been presented by
M. Cheng at this conference [24]. A complete description of our ensembles, scale determination
and measurements is also forthcoming [19].
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Figure 1: The one-flavor disconnected chiral susceptibility for the light quark. The transition region is
broad, as might be expected of a crossover, with a peak nearT ≈ 160 MeV.

Fig. 1 plots the disconnected chiral susceptibility as a function of the temperature. The sus-
ceptibility peaks at 160 MeV; accordingly we take that to be the approximate value of the chiral
phase transition temperatureTc. Since the phase transition is expected to merely be a crossover for
mπ > 0, this value only serves as a reference when discussing the possibility ofU(1)A restoration.

3. Symmetries, Correlators and Susceptibilities

The influence of a symmetry is seen on the appropriate correlators of Diracbilinears. In the

π

δ

τ
2:  q γ

5
q

:  q τ
2 q

:  q

:  q γ5q

σ

η
L RSU(2)   x SU(2)

SU(2)   x SU(2)
L R

U(1)
A

U(1)
A

q χχ

χχcon

con

5,con

5,con + χ disc

− χ 5,disc

Figure 2: The symmetriesSU(Nf )L ×SU(Nf )R andU(1)A relate mesons in different spin-flavor channels.
The above diagram summarizes these relations forNf = 2.
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scalar-pseudoscalar sector, forNf = 2, we have two iso-triplet correlators:

Cδ (x) =
〈

ud(x) du(0)
〉

, (3.1a)

Cπ(x) =
〈

iuγ5d(x) idγ5u(0)
〉

, (3.1b)

as well as two iso-singlet correlators:

Cσ (x) =
〈

(

uu(x)+dd(x)
) (

uu(0)+dd(0)
)

〉

, (3.2a)

Cη ′(x) =
〈

(

iuγ5u(x)+ idγ5d(x)
) (

iuγ5u(0)+ idγ5d(0)
)

〉

. (3.2b)

Theδ andπ correlators receive contributions only from diagrams with connected quark lines and
are thus easier to measure. Theσ and theη ′ on the other hand receive contributions from diagrams
with connected as well as disconnected quark lines. The connected partsof these correlators are just
theδ and theπ respectively. The full correlator however is obtained only after this part is canceled
by a similar contribution from the disconnected piece. This makes theσ andη ′ correlators much
harder to measure.

These correlators transform into one another under a chiral or an axial rotation, as summarized
in Fig. 2. This implies for e.g. that theπ and theσ (δ ) correlators become identical when chiral
(axial) symmetry is restored.

In addition to the correlators in eq. (3.1) we also calculated the connected vector and axial
vector correlators viz.

Cρ(x) =
〈

uγµd(x) dγµu(0)
〉

, Ca1(x) =
〈

iuγ5γµd(x) idγ5γµu(0)
〉

. (3.3)

An axial rotation has no effect on the vector and axial vector correlators. The two are in
fact related through chiral transformations and they become degeneratewhen chiral symmetry is
restored. We plot these correlators atT = 150 MeV and 160 MeV in Fig. 3. Since the transition
is a crossover the two only become exactly identical at very high temperatures, but they are nearly
degenerate byT = 160 MeV.
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Figure 3: The vector(ρ) and axial vector(a1) correlators forT = 150 MeV and 160 MeV respectively.

By integrating these correlators over the four-volume, we obtain the corresponding suscepti-
bilities χπ , χσ , etc. Just as for the correlators, one has connected and disconnected susceptibilities
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depending on the type of correlator being integrated. Furthermore, the disconnected parts of theσ
andη ′ susceptibilities are equal to the disconnected susceptibilitiesχdisc andχ5,discviz.

χσ ,disc=
〈

(ψψ)2〉−
〈

(ψψ)
〉2 ≡ χdisc and χη ′,disc=

〈

(ψγ5ψ)2〉≡ χ5,disc. (3.4)

The appropriate symmetry restoration gives rise to equalities among the different susceptibilities:

χπ = χδ +χdisc and χδ = χπ −χ5,disc.
[

SU(2)L ×SU(2)R
]

(3.5a)

χπ = χδ and χδ +χdisc= χπ −χ5,disc.
[

U(1)A
]

. (3.5b)

The differenceχπ −χδ must go to zero asU(1)A breaking is suppressed. Eq. (3.5a) tells us that this
difference equalsχdisc once chiral symmetry is restored. Moreover, we see that chiral symmetry
restoration implies thatχdisc = χ5,disc whereas axial symmetry restoration implies the opposite,
namelyχdisc = −χ5,disc. Either way, whenboth chiral and axial symmetry are restored, one has
χdisc= 0= χ5,disc. In other words,U(1)A restoration is signaled by a vanishing disconnected chiral
susceptibility.
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χ5,disc/T
2

(χπ-χδ)/T
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Figure 4: The susceptibilitiesχdisc, χ5,disc andχπ − χδ for each of the temperatures. All are very nearly
equal fromT = 170 MeV onward. None of these susceptibilities vanishes forall the temperatures shown
here. The red and blue points have been horizontally displaced by±1 MeV for clarity.

Fig. 4 plots these susceptibilities for each of the temperatures that we studied.Although the
equalities derived in Eqs. (3.5) are strictly valid only in the chiral limit, we see that χdisc, χ5,discand
χπ − χδ are almost equal to each other from about 170 MeV onwards. Furthermore, none of these
susceptibilities is equal to zero even atT = 200 MeV, the highest temperature that we studied. If
we takeTc ≈ 160 MeV, this would seem to suggest thatU(1)A remains broken even atT ≈ 1.25Tc.

4. The Correlation with Topology

Let us take a closer look at the source ofU(1)A violation. If we write theπ andδ correlators
(Eqs. (3.1)) in terms of their left- and right-handed components, we get

Cδ/π(x) =
〈

uLdR(x)dRuL(0)+uRdL(x)dLuR(0)
〉

±
〈

uLdR(x)dLuR(0)+uRdL(x)dRuL(0)
〉

.
(4.1)
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Figure 5: (Left) The sum of theδ andπ correlators. The temperature increases from 140 to 200 MeV as
one moves downward along they-axis. (Right) The difference of the two correlators. The temperatures are
identified by the same symbols as in the plot on the left.

Here the left- and right-handed parts are defined as

uL(x) =

(

1− γ5

2

)

u(x), uR(x) =

(

1+ γ5

2

)

u(x),

dL(x) =

(

1− γ5

2

)

d(x), dR(x) =

(

1+ γ5

2

)

d(x), (4.2)

and

uL(x) = u(x)

(

1+ γ5

2

)

, uR(x) = u(x)

(

1− γ5

2

)

,

dL(x) = d(x)

(

1+ γ5

2

)

, dR(x) = d(x)

(

1− γ5

2

)

. (4.3)

In terms of these, our scalar and pseudoscalar correlators are

u(x)d(x) = uL(x)dR(x)+uR(x)dL(x) and u(x)γ5d(x) = uL(x)dR(x)−uR(x)dL(x). (4.4)

A U(1)A transformation is given by

uL(x)→ e−iθ uL(x), uR(x)→ uR(x)e
−iθ ,

uR(x)→ e+iθ uR(x), uL(x)→ uL(x)e
+iθ , (4.5)

and similarly ford(x). Looking back at Eq. (4.1), we see thatU(1)A violation comes entirely
from the terms on the second line, which occur with opposite signs for the correlators. By contrast
the terms on the first line, which occur with the same sign for both correlators,are invariant with
respect toU(1)A transformations. From this it is clear that theU(1)A violating and respecting parts
may be isolated by looking at theπ −δ and theπ +δ correlators respectively.

We plot the sum and the difference of these two correlators in Fig. 5. We see that the difference
is of the same order of magnitude as the sum at the farthest separations (x ≈ Nσ/2) for all the
temperatures shown here. This reaffirms our earlier observation (Fig. 4) thatU(1)A remains broken
even at the highest temperatures that we studied.
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Figure 6: Time histories of the integrated correlators (red lines) and the topological charge (blue lines) for
T = 170–200 MeV. The topological charge histories have been displaced downward by 2-3 units for clarity.

It is important to determine whether theU(1)A breaking that we observe is due to the presence
of topologically nontrivial configurations or occurs merely because of the quark mass. The connec-
tion to topology is confirmed when we look at the time histories of these correlators and compare
these with the time histories ofQtop. Fig. 6 shows these time histories for four temperatures viz.
170, 180, 190 and 200 MeV. To remove the dependence on a particular separationx, we plot the
time histories of the integrated correlators viz.∑x (π(x)−δ (x)) ≡ π − δ . In all but a few cases,
the spikes inπ −δ are found to line up with the jumps to nonzero values of the topology. In other
words,U(1)A is broken not “on average” but rather by specific configurations whose frequency
decreases as the temperature is increased.

5. The Spectrum of the Dirac Operator

The connection to topology is intriguing, but it also raises questions about the eventual fate of
U(1)A breaking. Nontrivial topologies are distinguished by the fact that the Dirac operator always
has a zero eigenvalue in their presence.2 The contribution of these modes however vanishes when
the four-volume is sent to infinity i.e. in the thermodynamic limit.

2The Atiyah-Singer theorem constrains thedifferencebetween the number of left- and right-handed zero modes viz.
N+−N− = Qtop. Out of the totalN++N− zero modes however, onlyQtop are stable with respect to small deformations.
A stronger statement therefore is that in the presence of a configurationwith winding numberQtop, the Dirac operator
hasQtop exactor robustzero modes.
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To see this, let us express〈ψψ〉 andχπ −χδ in terms of the eigenvaluesλ of the Dirac operator
viz.

〈ψψ〉=
∫ ∞

0
dλρ(λ ,m)

2m
m2+λ 2 +

〈

|Qtop|
〉

mV
, (5.1a)

χπ −χδ =
∫ ∞

0
dλρ(λ ,m)

4m2

(m2+λ 2)2 +
2
〈

|Qtop|
〉

m2V
. (5.1b)

The usual weighted average over gauge fields is re-expressed as anaverage over eigenvalues dis-
tributed according to thespectral densityρ(λ ,m). The second term on each RHS represents the
contributions of the exact zero modes [25]. The first term represents the contributions coming from
the rest of the spectrum.

For large volumes, the topological charge is expected to obey a Gaussian distribution with a
width proportional to the volume viz. [26]

P(Qtop) =
1

√

2πχtopV
exp

(

−
Q2

top

2χtopV

)

. (5.2)

Eq. (5.2) implies that〈|Qtop|〉 ∝
√

V, hence the second terms in Eq. (5.1) vanish asV → ∞.
U(1)A-breaking then must come from the rest of the spectrum i.e. from the first terms of

Eqs. (5.1). In the chiral limit the dominant contribution to these integrals comes from the eigen-
values within a small distance of the origin. This is similar to what happens when chiral symmetry
is broken: Eigenvaluesλ ∼ O(1/V) i.e. thenear-zeromodes, build up near the origin and it is
these, rather than the exact zero modes, that break chiral symmetry [27]. This is reflected in the
Casher-Banks relation〈ψψ〉= πρ(0,0) for e.g. [28].

The spectral densityρ(λ ,m), for smallλ , can be determined by looking at the distribution of
the lowest eigenvalues of the Dirac operator with respect to the gauge configurations. For domain
wall fermions, the correct Dirac operator is the four-dimensional one whose exact form unfortu-
nately is unknown. However, since it is realized in the low-energy limit of the five-dimensional
theory, its low-lying spectrum will be the same as that of the full five-dimensional theory upto
an overall renormalization factor which may also be determined non-perturbatively. We show the
resulting histograms forρ(λ ) in Fig. 7. These results, as well as details of the renormalization
procedure, have all been presented by Z. Lin at this conference [29] and will also be described in a
forthcoming publication [19].

From Fig. 7, we see that the while the eigenvalue density at the origin shrinksdramatically in
going across the chiral phase transition from 150 to 170 MeV, small eigenvalues still occur with
reasonable frequency uptoT = 180 MeV. On the other hand, forT = 190 and 200 MeV most of the
eigenvalues occur away from the origin. Nevertheless at both temperatures there is also a second
set of eigenvalues that occurs close to the origin. It is these eigenvaluesthat are responsible for
U(1)A breaking.

Fig. 8 shows the correlation between the magnitude ofU(1)A breaking (i.e. the value of the
integrated correlatorπ − δ ) and the value of the smallest eigenvalue for the Dirac operator on a
configuration-by-configuration basis. It is clear from the plot that the closerλmin is to zero, the
larger the value ofπ −δ for that configuration. Furthermore,λmin is well-separated from zero for
the configurations withQtop = 0. Accordingly for such configurationsπ −δ is quite small.

9
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Figure 7: (Left to right, top to bottom) The renormalized eigenvalue spectrum forT = 160 – 200 MeV.
These figures have been taken from [29]. The histograms are w.r.t. Λ, which in the continuum is related

to the conventional Dirac eigenvalueλ by Λ =

√

λ 2+(ml +mres)
2. The leftmost line in each plot marks

the location ofΛ = ml +mres. In the continuum, the eigenvalue density at that point yields the value of
ρ(0,ml +mres).

The dominant contribution toχπ − χδ comes from the configurations withQtop 6= 0. As ex-
pected,λmin is quite close to zero for these configurations. These eigenvalues however shall vanish
in the thermodynamic limit, and the magnitude ofU(1)A breaking atT = 200 MeV and 190 MeV
is likely to be much smaller than what we currently see.

6. Summary and Discussion

The question as to whetherU(1)A is restored at very high temperatures has a long history. As
already mentioned, such a restoration cannot be complete belowT = ∞. Nevertheless its breaking
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Figure 8: Scatter plot showing the correlation betweenπ−δ (y-axis) and the value of the smallest eigenvalue
Λmin (x-axis) atT = 200 MeV on a configuration-by-configuration basis.Λmin is related to the smallest

Dirac eigenvalue byΛmin =
√

λ 2
min+(ml +mres)

2. The dotted vertical lines bracket the unphysical region
Λmin 6 ml +mres. Open circles denote configurations withQtop = 0 while bursts denote configurations with
Qtop 6= 0. Configurations with large values ofπ − δ are also those withQtop 6= 0, indicating thatU(1)A

breaking at this temperature comes from the exact zero modes. Note that they-axis is logarithmic.

is very much suppressed at high temperatures and, depending on the magnitude of suppression, it
could beeffectivelyrestored above some temperature. It is natural to ask whether this temperature
is close to the familiar chiral transition temperature. In this work, we investigatedthis question in
the context of the 2+1-flavor theory, on the lattice, by working with a chiral action and examining
the behavior of the scalar and pseudoscalar iso-triplet correlators.

We found thatU(1)A remained broken even after the usualSU(2)L ×SU(2)R chiral symmetry
had been restored. Moreover this was due to the presence of configurations withQtop 6= 0. Although
the proportion of such configurations in our ensembles decreased as thetemperature was increased,
the differenceχπ −χδ was still nonzero at all our temperatures.

A study of the spectrum of the Dirac operator revealed that this breaking,at least at our highest
temperatures (T = 190 MeV and 200 MeV), resulted from the presence of zero modes whichmust
always arise whenever the underlying gauge configuration hasQtop 6= 0. Unfortunately since the
density of the exact zero modes vanishes asV−1/2, whereV is the four-volume, the observed
breaking is unlikely to persist in the infinite-volume limit.

On the other hand, the density of thenear-zero modesis an intensive quantity. It is these modes
that are responsible for keepingU(1)A broken even after chiral symmetry has been restored. The
possible form of the spectral densityρ(λ ,m) that yields〈ψψ〉= 0 butχπ −χδ 6= 0 is an intriguing
and currently open question.
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