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Lattice QCD calculations in charm and bottom physics are particularly important because they
can provide the hadronic weak decay matrix elements needed for key constraints on the CKM
Unitarity Triangle. I will summarise recent results in this area, paying particular attention to
sources of error, comparison between methods and tests of results against experiment, for exam-
ple, in the spectrum. Updated world averages for decay constants this year are : fDs =248.6(2.4)
MeV; fD = 212.1(3.4) MeV; fBs = 227(4) MeV; fB = 190(4) MeV. Note that B decay constants are
clearly lower than the corresponding D decay constants. Improved D semileptonic form factors,
both shape and normalisation, now allow the direct determination of Vcs and Vcd to 3% and 5%
respectively. This year we also have a clear demonstration that dependence of form factors on
the spectator quark mass between light and strange is very small. Apart from the phenomenology
implications, this has practical application to the normalisation of branching fractions in exper-
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1. Introduction

Heavy quark physics has turned out to be one of the ‘killer applications’ of lattice QCD and
results in this area have done much to persuade the particle physics community that we now have
a serious tool for calculating strong interaction effects that can provide accurate phenomenology
not available with any other method. Particularly important are various heavy meson weak decay
matrix elements that are key to constraining the vertex of the Unitarity Triangle derived from the
Cabibbo-Kobayashi-Maskawa (CKM) matrix for a stringent test of the self-consistency of the Stan-
dard Model. Calculations of these matrix elements must not be seen in isolation, however. One of
the key features of (lattice) QCD is the small number of free parameters - a mass for each quark
and an overall scale parameter or equivalently a coupling constant. Once these are fixed a myriad
of parameter-free tests against experiment become possible. This is particularly true in the heavy
quark sector where there are many gold-plated states in the spectrum. It is still possible to make
predictions ahead of experiment, which are many times more valuable than postdictions in terms
of credibility. In addition new methods for heavy quarks have allowed us to leverage improved
accuracy in light quark physics, for example for quark masses.

Here I will discuss the current status of lattice QCD calculations in charm and bottom physics,
comparing formalisms, providing world averages and discussing prospects for the future. An im-
portant theme will be how to improve the errors and how to test that we have improved the errors,
since precision from lattice QCD is critical for the Unitarity Triangle tests discussed above.

2. Heavy quark physics on the lattice

In discretising the QCD Lagrangian onto a space-time lattice we inevitably generate discreti-
sation errors that appear as some power of the lattice spacing, a. Physical results, for example
hadron masses, then depends on the lattice spacing as:

m(a) = ma=0
[
1+A(Λa)i +B(Λa) j + . . .

]
. (2.1)

Here, for a light hadron, we would expect Λ to be the typical dimensionful scale of QCD, say a few
hundred MeV. Then A,B are O(1). Since the lattice spacing of a modern lattice QCD calculation
is of size a−1 ≈ 1−3 GeV, Λa << 1. Good discretisations, with small errors, have leading power
i = 2 and higher powers, j, starting at 4.

For heavy quarks the scale for the discretisation errors will typically be set by the heavy quark
mass, mQ, which makes controlling the discretisation errors harder. For a lattice spacing a≈ 0.1fm
then mca≈ 0.4, mba≈ 2. For charm quarks this indicates that, although discretisation errors will be
larger than those for light hadrons, good results are possible with a highly improved action on fine
lattices. For example, using the Highly Improved Staggered Quark action [1] where the leading
errors are O(αsa2), discretisation errors of 2% are seen on 0.09fm lattices (where mca = 0.4) in
the decay constant of the ηc meson, when using the heavy quark potential parameter, r1, to fix the
lattice spacing [2]. For light meson decay constants at the same lattice spacings, the discretisation
errors are barely visible [3]. For b quarks the situation is worse and this is why methods using a
nonrelativistic expansion of the Dirac Lagrangian were developed. By removing mQ as a dynamical
scale in the calculation they allow the scale of discretisation errors to be set again by Λ. A price
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has to be paid in terms of complexity and in other sources of systematic error coming from the
nonrelativistic expansion. However, these methods have been the workhorses of b physics in the
past because they enabled calculations to be done at the lattice spacing value that were available.
As we will see here, this is is beginning to change but it is likely that we will continue to need a
mix of methods into the future.

There are a variety of relativistic actions in use for light quarks and charm quark physics
programmes are now being developed with all of them, sometimes with some modifications.

• The Highly Improved Staggered Quark action developed by the HPQCD collaboration [1]
includes a further smearing level beyond the asqtad improved staggered quark action to give
discretisation errors at O(αsa2) and O(a4), with small taste-changing errors. When used
for heavy quarks, the coefficient of the ‘Naik’ 3-link improvement term is modified to have
a coefficient which is calculated as an expansion in ma (starting at (ma)2) to remove the
leading (ma)4 errors. Results from extending this action to b quarks are now available [4, 5].

• The twisted mass action developed by the European Twisted Mass Collaboration [6] uses
a doublet of Wilson-like quarks that have an additional mass term multiplying τ3 in flavor
space. This is used to introduce a u/d doublet in the sea and work is underway on configu-
rations that also include a s/c doublet [7]. For valence c and s quarks ETMC use a separate
doublet for each flavor [8]. The leading discretisation errors are O(a2) at maximal twist [6].
This action is also being used now for heavier quarks to extrapolate up to b [9].

• Clover actions use a clover term to remove the tree-level O(a) errors from the Wilson action
and have been in use for many years. In principle, unless the clover term is tuned nonper-
turbatively, these actions have αsa discretisation errors. In newer variants, including various
kinds of smeared links, discretisation errors can be made quite small and effectively O(a2)

and O(a3) [10]. The clover action is being used for c quarks on lattices with a fine tem-
poral lattice spacing and relatively coarse spatial lattice spacing by the Hadron Spectrum
collaboration [11].

• The good chiral properties of domain wall and overlap quarks enforce discretisation errors
starting at O(a2). This is an expensive method for charm physics, but is being tested. See,
for example [12].

The advantages of a relativistic action for c quarks, if discretisation errors can be made small,
are:

• The hadron mass is simply and precisely obtained from the energy of the zero momen-
tum hadron correlator. With a non-relativistic approach it is necessary to calculate finite-
momentum correlators and extract the ‘kinetic mass’ from the momentum dependence of the
energy which is much less precise.

• In formalisms with enough chiral symmetry (HISQ, twisted mass and domain wall/overlap
in the list above) the PCAC relation protects the axial current from renormalisation. This
means, for example, that pseudoscalar decay constants can be obtained directly with the
correct normalisation and no error from a Z factor is required.
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• Using the same action for c quarks as for u/d and s allows some cancellation in ratios.
For example the HPQCD collaboration obtained mc/ms to 1% (value 11.85(16)) using the
HISQ action for both quarks [13]. ETMC obtain 12.0(3) [8] for this ratio and 11.34(45) is a
preliminary result with ‘Brillouin-improved’ Wilson quarks [14].

The contrasting approaches that incorporate nonrelativistic ideas are:

• NonRelativistic QCD (NRQCD) is a discretised version of a nonrelativistic effective theory
which can be matched at a given order in vh, the velocity of the heavy quark, to full QCD [15].
The heavy quark mass is tuned nonperturbatively and this fixes the O(v2

h) kinetic energy
term. Higher order terms have coefficients that are in principle calculable in perturbation
theory (and will typically diverge as mha→ 0) but in most work to date have taken tree level
values. The same action can be used for heavy-heavy and heavy-light physics.

• The discretisation of Heavy Quark Effective Theory onto the lattice starts from the static
(infinite mass) approximation and adds 1/mh and higher corrections through the calculation
of matrix elements, with coefficients determined nonperturbatively, rather than incorporating
kinetic terms in the dynamics. It can be used for heavy-light physics where a systematic
programme has been developed by the Alpha collaboration [16].

• The Fermilab method, as originally implemented, uses the tadpole-improved clover action
with a heavy quark mass (b or c) but removing the leading discretisation errors by fixing the
quark mass from the meson kinetic energy [17]. The field is also ‘rotated’ to remove tree-
level O(a) errors. As the lattice spacing is reduced this becomes the standard clover action.
Extensions of this method called ‘Relativistic Heavy Quarks’ (RHQ) tune further coefficients
nonperturbatively [18], for example fixing the clover term from a hyperfine splitting and an
asymmetry between time and space so that static and kinetic masses are equal [19].

It can be helpful for an accurate comparison of b and c physics to use the same action for both.
However, so far this has really only been made an advantage in results using the relativistic HISQ
action for all 5 quarks [4].

A key aim of flavor physics from lattice QCD is to calculate simple meson weak matrix el-
ements that allow the determination of elements of the CKM matrix from experimental rates for
leptonic or semileptonic decays or (for neutral B/K mesons) oscillations. In Fig. 1 I give the CKM
matrix and the simple processes that allow the determination of that CKM element by combining
experiment and lattice QCD. The processes are dominated by those for B and D meson decay, hence
the importance of b and c quark physics in lattice QCD. Here I will review lattice calculations for
a number of these processes and summarise the direct tests of CKM unitarity that result. Further
discussion of the impact of these tests on Beyond the Standard Model scenarios is given in Enrico
Lunghi’s talk [20].

3. Charm physics results

3.1 Spectroscopy

The spectroscopy of charmonium, D and Ds mesons and charmed baryons has had a resurgence
of interest from experiment in recent years, particularly following the discovery of a number of new
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Figure 1: a) The Cabibbo-Kobayashi-Maskawa matrix in the Standard Model and the simple weak decay
processes from which the elements can be determined given accurate lattice QCD calculations. b) an illus-
tration of the leptonic decay of a charged pseudoscalar meson through annihilation of its valence quark and
antiquark to a W boson.

states in the charmonium spectrum by the B factories. The LHC will produce charmed and doubly
charmed baryons in huge numbers, giving lattice QCD the opportunity to predict some masses
ahead of experiment.

This year saw new general spectroscopy results from a variety of clover actions. The clover
action, as discussed above, is not highly improved and so discretisation errors are not minimised,
but it is a simple and relatively efficient action to use when calculating a lot of hadron correlators
with multiple source and sink operators. Examples include promising first results from the Hadron
Spectrum Collaboration [11] giving a large number of states in the charmonium spectrum. The
use of an anisotropic lattice with a finer spacing in the time than in spatial directions enables
improved access to excited states, which can otherwise disappear rapidly from the correlator as a
function of time from the source. In addition many operators are used for each irrep of the lattice
rotation group, allowing identification of the expected continuum multiplets and the separation
of quark model and hybrid states. All of this requires an enormous number of correlators to be
calculated, however, and so results at only one lattice spacing and sea u/d quark mass (on n f = 2+1
configurations) are available so far. The issue of overlap with multi-hadron channels for the excited
‘non-gold-plated’ states has also not yet been addressed. The X(3872) [21] is still safe, but perhaps
not for much longer, from the straitjacket of an unambiguous lattice QCD identification.

The aims of calculations using SLiNC and 2-HEX smeared clover quarks on isotropic n f =

2+1 configurations by [22] are similar but also include preliminary results on the D and Ds spec-
trum. Results for charmed baryons were given by [23] using an RHQ action on the new ‘second
generation’ MILC configurations that include 2+1+1 flavors of sea HISQ quarks. The conclusions
back up earlier indications that the mass of the Ξcc found by SELEX [24] is unlikely to be correct.

The calculations above are fairly general ones aimed at mapping out a large part of the spec-
trum. I now want to turn to the ‘precision calculations’ that are being done to provide weak decay
rates for determination of the CKM matrix. These calculations focus on ground state mesons only
and accuracy is critical. I will argue that accuracy must still be judged in tandem with results for
the spectrum and other quantities that can be compared with experiment or between calculations.

One variable that provides an excellent test in charm physics is the difference in mass, ∆,
between the Ds meson and one half of the mass of the ηc. Typically one of these meson masses is
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Figure 2: a) Comparison of lattice QCD results including u, d and s sea quarks [26, 25, 2] to experiment
for the mass difference ∆ = m(Ds)/m(ηc)/2 or (on the right) a spin-averaged version of it. b) Results
from ETMC for ∆ on n f = 2 configurations with a chiral and continuum extrapolation (marked as physical
extrap.) [27] compared to experiment (marked as physical point).

used to fix the c quark mass and the other is then a parameter-free determination from the lattice
QCD calculation (assuming that the s quark is determined from a light meson such as the K).
HPQCD use the ηc, Fermilab/MILC use the Ds and ETMC have tried both. ∆ can be calculated
in either case and is much more precisely determined than the masses themselves. This is because
the difference is much smaller than either mass and so the absolute size of lattice spacing errors is
much reduced. An error of a few percent is readily achieved in modern lattice QCD calculations
and this would be impossible with any other method. ∆ is the difference in binding energy between
a heavy-light and a heavy-heavy meson and there are no good approximate treatments that apply
to both systems. Certainly there are none that could be relied on for errors of a few percent.

Fig. 2 summarises results for ∆ from different calculations. The Fermilab Lattice/MILC re-
sult [25] includes vector meson masses to make a ‘spin-averaged’ mass difference. This removes a
systematic error of O(αsa) resulting from the clover term in their action. Their total error is around
2% (10 MeV), dominated on the upward side by lattice spacing uncertainties from an old determi-
nation which has now been improved. The PACS-CS collaboration [26] using a similar RHQ action
also give a spin-averaged splitting. The PACS-CS result is from a calculation at one value of the
lattice spacing only, with no estimate of lattice spacing errors. The HISQ result from HPQCD [2]
is much more accurate, with errors of less than 1% (3 MeV). Small statistical errors enable the
discretisation errors to be clearly identified and extrapolated away, underlining the advantages of a
relativistic formalism. Note that the value and the error quoted by HPQCD includes an estimate of
effects from electromagnetism, annihilation of the ηc, and missing c quarks in the sea.

Fig. 2 also includes results from the ETM collaboration using the twisted mass formalism
for c quarks on gluon configurations including only u/d quarks in the sea. Since heavy-heavy
mesons and heavy-light mesons are sensitive to different momentum scales it might be expected
that ∆ would ‘see’ the incorrect running of the strong coupling constant between scales that is a
consequence of using only 2 flavors in the sea. Challenged to test this at the lattice conference
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ETM produced the right hand plot [27] in fig. 2 which shows that in fact a continuum and chiral
extrapolation of ∆ agrees well with experiment with errors of 2% ((6)(4) MeV, where the first error
is statistical and fitting and second an estimate of systematics).

Using time moments of their statistically very precise ηc correlators the HPQCD collaboration
has developed a method with continuum QCD theorists [28] that enables the c quark mass to
be extracted very accurately, using the high-order continuum perturbation theory that is available
for the charm quark polarisation function. The result in the MS scheme, m(4)

c (3GeV) = 0.986(6)
GeV [4], agrees well with that determined from e+e− cross-sections in the charm region using
continuum methods. The ETM collaboration are now also applying this method and preliminary
results presented here [29] look promising. The c quark mass is then another quantity that can be
compared accurately between lattice QCD calculations (and with continuum results) and it would
be good to have numbers from other formalisms. The accuracy in the c mass can then be cascaded
down to lighter masses using mass ratios [13].

3.2 Leptonic decays

The annihilation rate of the charged D and Ds mesons to leptons via a W boson is parameterised
by the decay constant, fD(s) . This is defined (here for the Ds at rest) as the matrix element between
the meson and the vacuum of the temporal axial current that couples to the W (the vector part of
the W interaction does not contribute):

〈0|cγ0γ5s|Ds〉= fDsMDs . (3.1)

In a formalism with a partially conserved axial current, we can also use

(ms +mc)〈0|cγ5s|Ds〉= fDsM
2
Ds
. (3.2)

The decay constant is a property of the meson related to the internal configuration of its valence
quark and antiquark affected by their strong interaction. It is typically calculated in lattice QCD
from the amplitudes in the same multiexponential fit to the meson correlator that gives the meson
masses from the exponents. When the same operator, O , is used to create and destroy the meson,
the fit function for the correlator is:

C2pt = ∑
i

a2
i f (Ei, t); f (Ei, t) = e−Eit + e−Ei(Tp−t). (3.3)

Here Ei are the energies of different radial excitations - the ground state will be denoted E0. Tp

is the time length of the lattice and the form of the time dependence allows for the meson to go
round the lattice either way. For mesons containing staggered quarks there are typically additional
oscillating terms that must be fitted. The amplitudes ai = 〈0|O|i〉/

√
2Ei, allowing the decay con-

stants to be extracted from eqs. 3.1 and 3.2 if appropriate local operators are used for O . The decay
constants we will discuss here are all for ground-state mesons and therefore extracted from a0. For
formalisms with a PCAC relation (such as HISQ or twisted mass) the decay constant is absolutely
normalised. For formalisms without this level of chiral symmetry (such as the clover formalism)
a renormalisation factor must be calculated to convert the lattice decay constant to a continuum
value.
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The branching fraction for Ds leptonic decay is then given by:

B(Ds→ lνl) =
G2

F |Vcs|2τDs

8π
f 2
Ds

mDsm
2
l

(
1−

m2
l

m2
Ds

)2

. (3.4)

This has been determined by the BaBar, Belle and CLEO-c experiments and in both µ and τ

modes. Given a value for Vcs, for example from assuming unitarity of the CKM matrix, then an
experimental value for fDs can be extracted. Alternatively the comparison of theory and experiment
can be used to determine Vcs.
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Figure 3: a) Comparison of lattice QCD results for fDs to experimental averages extracted from leptonic
decay rates (also showing µν and τν modes separately) using Vcs = 0.97345(16) [30]. The lattice QCD
world average is 248.6(2.4) MeV, shown with dashed lines; the experimental average is 257.3(5.3) MeV. b)
A ‘history’ plot for experimental and lattice results for fDs , updated from [2].

Fig. 3a shows the current results for fDs from both lattice QCD and experiment. The experi-
mental averages are from January 2011 [30], but there have been no new experimental results since.
The experimental average over all modes gives fDs = 257.3(5.3) MeV, using Vcs = 0.97345(16).

fDs determination was specifically targeted by the CLEO-c and the B factory experiments as a
good test of lattice QCD and this is why the subject has been vigorously pursued both by experi-
mentalists and lattice QCD theorists. Because the Ds has no valence light quarks, fDs is relatively
insensitive to the extrapolation of mu/d to the physical point and so the key issue for an accurate re-
sult is how well the valence charm quarks can be handled. Full lattice QCD results for fDs date back
to 2005 when a prediction of 249(16) MeV was given by the Fermilab Lattice/MILC collaboration
ahead of experimental results starting in 2006. They used the Fermilab action for charm quarks and
the asqtad improved staggered action for the strange quark. We have seen from the discussion in the
introduction that nonrelativistic methods for heavy quarks reduce discretisation errors. They have
several disadvantages, however, and I would claim that it was fairly conclusively demonstrated by
the HPQCD collaboration in 2007 [31] that an improved relativistic action (HISQ) was superior.
HPQCD’s result for fDs had a 1.5% error, similar to those possible in the same calculations for the
light decay constants fK and fπ . This is not surprising - statistical and scale uncertainty errors are
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fairly similar in all cases, there is no normalisation uncertainty, and the chiral extrapolation for fK

and fπ is over a similar range to the a extrapolation of the Ds results.
In 2008 the experimental results for fDs were around 275 MeV, although individual results had

fairly large errors of 15-20 MeV. This gave a very exciting picture for a while, as mapped out in
the history plot in fig. 3b. Although the 3σ discrepancy between lattice QCD and experiment that
existed then has now fallen to 1.6σ [2] as the experimental values moved down and the lattice QCD
result moved up, it showed very clearly how precision lattice QCD calculations can have an impact
on experiment.

The current picture is summarised in fig. 3. The HPQCD result was updated to 248.0(2.5)
MeV in 2010 [2] with a recalibration of the lattice spacing. This now includes results from MILC
asqtad n f = 2+1 configurations at 5 values of the lattice spacing from 0.15fm down to 0.04fm and
multiple mu/d values. Absolute normalisation of the decay constant is also possible in the twisted
mass formalism and ETMC gave a result of 244(8) MeV in 2009 [32] using n f = 2 twisted mass
configurations. This was updated in 2011 to 248(6) MeV [9] using 4 values of the lattice spacing
from 0.1fm down to 0.05fm and multiple mu/d values. In 2011 The PACS-CS collaboration gave
257(5) MeV [26], including only a partial estimate of errors. They used an RHQ action at one
value of the lattice spacing with n f = 2+ 1 flavors of clover sea quarks, but having reweighted a
small ensemble of configurations to the physical mu/d point.

The Fermilab Lattice/MILC collaboration have also recently updated their analysis [33] using
the Fermilab action on the 0.09 and 0.12 fm MILC 2+1 asqtad lattices. They obtain an improved
result of 260.1(10.8) MeV where the error is dominated by heavy quark effects, i.e. estimates of
the mixed relativistic/discretisation corrections from matching the Fermilab action to continuum
QCD. The error from the overall renormalisation constant, ZA4

Qq
, to be applied to convert from the

lattice decay constant to the continuum one is taken to be 1.5%. The renormalisation is done using
a method which combines perturbative and nonperturbative techniques. Z for the local temporal
vector current can be determined nonperturbatively in both the heavy-heavy case and the light-light
case using the normalisation condition:

1 = 〈Hqq|ZV 4
qq
|Hqq〉. (3.5)

Then the temporal axial current renormalisation needed for fDs is defined by:

ZA4
Qq
= ρA4

Qq

√
ZV 4

qq
ZV 4

QQ
(3.6)

and ρA4
Qq

is calculated through O(αs) in lattice QCD perturbation theory. A surprising and signifi-
cant result is found - the coefficient of αs is very small (< 0.1, but not zero) for heavy clover quark
masses up to around ma = 1 after which it rises linearly with ma. This is shown in Fig. 3 of [34]
but note that this is a plot of the coefficient of g2. The x-axis is the quark mass m1a = log(1+m0a)
where m0a is the standard mass. The relevant region, even for b quarks, is then quite restricted:
m0a = 3 corresponds to m1a = 1.4. It is not clear why the αs coefficient in ρQq is so small. Some
cancellation of perturbative corrections between ZV and ZA in eq. 3.6 seems reasonable but it would
be good to understand if the tiny one-loop coefficient near clover masses of zero is accidental or
whether it is telling us something. Does it hold for the combination of clover quarks with other
light quarks in general? It seems to hold, but to a somewhat lesser extent, for other types of cur-
rent, such as the spatial vector [34]. It is not clear to me what this says about the next order in
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perturbation theory and it would be good to see some nonperturbative tests of this. A simple test
would be to compare the amplitudes of mixed clover-staggered pseudoscalar correlators to those
of absolutely normalised staggered-staggered correlators at the same mass, for example that of the
ηs. At these lower masses discretisation errors are less of an issue and a connection could be made
to calculations using relativistic clover quarks for light decay constants, which could be interesting
( for a review of issues here see [35] ). Fermilab/MILC take an error on fDs from uncalculated
higher orders in perturbation theory in ρA4

Qq
of 0.1α2

s . This seems optimistic to me without further
tests, but on the other hand this is academic at present because even a much more pessimistic error
would have little impact on the total error.

The current HPQCD and Fermilab/MILC results supersede their earlier results and are the
only two using 2+1 flavors of sea quarks with a complete error budget. Even though they both use
the MILC configurations, there is little overlap in the key ensembles in the two cases, so I take their
errors to be independent. I then combine them into a world-average value of fDs from lattice QCD
of 248.6(2.4) MeV, not surprisingly dominated by the HPQCD result.

In the ratio fDs/ fD Z factors cancel and so the errors are similar at 2-3% between HPQCD re-
sults using HISQ (1.164(18) [2], updating the error from [31]) and Fermilab/MILC (1.188(25) [33]).
This gives a world average of 1.172(15) where I have now taken a 100% correlation between the
statistical errors of the two calculations since the fD calculations used the same ensembles. This
value is not yet accurate enough to tell whether it agrees or disagrees with the similar ratio fK/ fπ

which has been calculated to be 1.193(5) from lattice QCD [35]. Note also that fηs/ fK , another
ratio in which the numerator and denominator differ by the substitution of an s quark for a u/d,
is 1.165(8) from lattice QCD [3, 36]. Surprisingly the PACS-CS result of fDs/ fD = 1.14(3) [26],
which used mu/d values at the physical point, is lower in its central value than either HPQCD or
Fermilab/MILC, who have to extrapolate upwards to that point. I have not included this number in
the average since it was only obtained on configurations at one lattice spacing. To improve results
for fDs/ fD clearly needs more chiral lattices; there is no particular need for finer lattices. The new
sets of lattices with u/d sea quark masses at the chiral point which are being generated should
allow fDs/ fD to be calculated with 1% accuracy. The experimental average for fDs/ fD is poorly
determined at 1.26(5) [37] because there is no cancellation of errors in the ratio. The experimental
result for fD is 206.1(8.9) MeV from CLEO-c [37] using Vcd from CKM unitarity = 0.2252(7) [38].
Combining the average lattice fDs with the average ratio of fDs/ fD gives fD = 212.1(3.4) MeV.

3.3 Semileptonic decays

The analysis of semileptonic decays in which one meson changes into another and emits a
W boson gives us access to more detailed information about meson internal structure than the one
number represented by the decay constant. The information from QCD in these decay processes
is parameterised by form factors that are functions of q2, the square of the 4-momentum transfer
from the initial to the final meson. Calculation of the form factors in lattice QCD allows the q2-
dependence of the rate for such decays to be compared to experiment as well as CKM matrix
elements to be extracted. Since the lattice calculation corresponds to a specific final state meson,
the experimentalists must identify this meson in their sample of decays to give the ‘exclusive’ (as
opposed to the ‘inclusive’) rate. The simplest case is that of pseudoscalar to pseudoscalar decay in
which only the vector piece of the current coupling to the W contributes, and there are two form
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Figure 4: a) Sketch of a 3-point function. The operators for D and K are a distance T apart on the lattice
and the current operator is inserted between them. The 3-point correlator should be calculated for all t from
0 to T and for several different T values. b) Transformation of the complex t = q2 plane to the z plane for
semileptonic form factors.

factors, the vector form factor f+ and the scalar form factor f0. Illustrating this for D→ Klν decay
we have:

〈K|V µ |D〉= f+(q2)

[
pµ

D + pµ

K−
m2

D−m2
K

q2 qµ

]
+ f0(q2)

m2
D−m2

K

q2 qµ . (3.7)

The matrix element on the left-hand side is determined from the amplitude of a "3-point correlator"
sketched in Fig. 4. The source and sink mesons are taken a distance T apart on the lattice and the
vector current is inserted a distance t from the source. t is allowed to run over all values from 0 to
T and the correlator is fit simultaneously as a function of t and T along with the standard "2-point"
meson correlators for the source and sink mesons, for which the fit function is given in eq. 3.3. The
3-point function fit is :

C3pt = ∑
i, j

aib jVi j f (Ea,i, t) f (Eb, j,T − t) (3.8)

where ai and b j are the same amplitudes and Ea,i and Eb, j are the same energies as in the 2-point
function fits for mesons a and b respectively and Vi j is the matrix element of the vector current
between them. The result we typically want, and that I will discuss here, is that between the ground
states, V00. When staggered quarks are used there are generally additional oscillating pieces that
need to be fit.

To cover the range of q2 values in the decay one or both of the source or sink mesons can be
given a spatial momentum. It is simplest to work in the rest frame of the source meson (for example
the D above). Then, when the K is at rest, q2 is a maximum at (mD−mK)

2, and the lepton and
antineutrino emerge back-to-back. This is the easiest kinematics to reproduce on the lattice, but the
experimental rate at this point is zero (see eq. 3.9 below). The other extreme is q2 = 0 when the
lepton and antineutrino balance the K momentum. Lattice QCD errors grow as spatial momentum
of the K increases. The experimental errors are best for small q2 (but not necessarily 0) where the
rate is larger.

When the W decay to leptons is folded in with eq. 3.7, the contribution to the rate from f0(q2)

appears multiplied by lepton masses and so for e and µ channels is negligible. Then :

dΓ

dq2 =
G2

F p3
K

24π3 |Vcs|2| f+(q2)|2. (3.9)

11



Standard Model Flavor physics on the Lattice Christine Davies

There is a useful kinematic constraint from eq. 3.7 at q2 = 0: f+(0) = f0(0). This is helpful because
the scalar form factor can be absolutely normalised from the PCVC relation ∂µV µ = (m1−m2)S
when the same formalism is used for the two quarks in the weak decay (c and s for D→ K decay)
and they differ in mass. Then:

〈K|S|D〉= f0(q2)
m2

D−m2
K

mc−ms
, (3.10)

where mc and ms are the bare lattice quark masses. This method has recently been introduced by
the HPQCD collaboration [39], reducing lattice errors significantly for f+(0).

Continuum theorists have developed a good understanding of the behaviour of form factors
based on their pole and cut structure in the wider complex q2 plane (see, for example, [40]). The q2

region for semileptonic decay runs from q2 = 0 up to (for D→K) q2
max = t− = (mD−mK)

2. Above
t+ = (mD +mK)

2 where a real D and K can be exchanged, there is a cut. In addition there may be
poles if there are isolated resonances with the right quantum numbers with masses between t− and
t+. For example, the D→ K vector form factor has a pole at q2 = m2

D∗s
where mD∗s −mD = 243 MeV

and the scalar form factor has a pole at mDs0 −mD = 448 MeV (ignoring the suppressed Dsπ cut).
The form factor diverges at the pole, but this is outside the physical region for semileptonic decays
so what is seen is a rise of the form factor as q2 increases to q2

max.
It is useful to remove this pole behaviour from the form factor so that f̃ (q2) = f (q2)/(1−

q2/m2
pole) and then to transform f̃ into z-space where

z =

√
t+−q2−

√
t+− t0√

t+−q2 +
√

t+− t0
. (3.11)

Eq. 3.11 maps the line around the cut from q2 = ∞ to q2 = t+ and back again to the circle with
|z| = 1, as shown in Fig. 4b. The physical semileptonic region is then inside this circle, where f̃
is finite and well-behaved. The exact position of the physical region depends on the value for t0
(since z(q2 = t0) = 0). Often the region is made symmetric about z = 0 to minimise the maximum
z value but it can be more convenient to take t0 = 0. The form factor f̃ in the physical region can
be described by a simple power series in z. Allowing the coefficients of the expansion to depend on
lattice spacing and mu/d provides a straightforward way to extrapolate to the continuum and chiral
limits which, for example, reduces the confusion between q2 dependence and mu/d dependence.
The continuum and chiral limit form factor f (q2) can then easily be reconstituted at the end.

Lattice QCD calculations for semileptonic form factors have improved hugely over the last
few years as techniques have developed. State-of-the-art calculations now have: high statistics,
including the use of random wall sources to improve this further; multi-exponential fits to the 3-
point function for multiple T values and not simply a "plateau" search in a ratio of 3-point and
2-point functions; use of a phase rotation of the gluon field to tune spatial momenta accurately to
find the q2 = 0 point [41] and use of the z expansion [42, 39] as described above to fit the form
factor shape and improve extrapolation to the chiral/continuum limit.

Experimentalists often quote their results, for example for D→ K, in the form of a value for
Vcs f+(0), obtained from a fit to their data which includes a parameterisation of the form factor.
A lattice calculation of f+(0) can then be used to determine the CKM element. Fig. 5 shows the
current status of lattice QCD calculations for f+(0) for D→K and D→ π , along with experimental
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Figure 5: a) Lattice QCD results for f+(0) from D→ K and D→ π decay, compared to results from
fitting experimental semileptonic rates as a function of q2 [46], determining f+(0)Vcx and then taking
Vcs=0.97345(16) and Vcd=0.2252(7). b) Vcd and Vcs determined from combining results for semileptonic
and leptonic decay rates with lattice QCD world average values for form factors and decay constants given
in the text. The inner (red) error bar is from experiment; the outer error bar is the total error bar including
that from lattice QCD. The Vcd plot includes the direct determination from neutrino experiments [38]. The
dashed grey lines give the values from assuming CKM unitarity [38].

results obtained by using unitarity values for Vcs and Vcd . The HPQCD/HISQ results [39, 43]
are obtained from f0(0) which, as discussed above, is absolutely normalised. This shows a big
improvement over earlier results in that D→ K and D→ π values are clearly distinguished, with
the accuracy improved to the level of a few percent. Since these are the only results in full QCD
to date using more than one lattice spacing we simply quote these numbers as the ‘world average’:
f D→K
+ (0) = 0.747(19) and f D→π

+ (0) = 0.666(29).
Fermilab/MILC gave a progress report on their calculation of D→ π f+(q2) this year [44]

showing results from 11 ensembles and a shape that agrees well with CLEO-c data. They project
future errors on f+(0) of less than 5%, dominated by heavy quark and chiral extrapolation errors.
The renormalisation of the clover-staggered vector current is done in the same way as for decay
constants discussed in section 3.2.

HPQCD also presented new results on f+(q2) obtained using a spatial vector current nor-
malised in the symmetric case using eq. 3.5 since the Z factor does not depend significantly on
mass [45]. This is found to agree with a local temporal charm-strange vector current which can be
normalised by the fact that at q2

max the vector matrix element in eq. 3.7 is equal to f0(q2
max)(mD +

mK). The phase technique [41] is used to tune across the physical q2 range, including at q2 = 0.
f+ and f0 are fit together in z-space, using t0 = 0 so that the constraint f+(0) = f0(0) can be main-
tained. The final form factor shapes agree well with experiment and we expect a further factor of
two improvement in the determination of Vcs from this method.

These results [45] showed up an interesting fact, not apparently noticed before, that the form
factors for charmed meson decay are very insensitive to the spectator quark mass as it is varied
between light and strange. This is within statistical errors of 1-2% at high q2 and 2-5% at q2 = 0.
The insensitivity has significant consequences. One is that Ds→ K and D→ π form factors are the
same [45], which can be tested experimentally. Another is that this would then be expected to hold
also for B meson decays so that Bs→ Ds and B→ D form factors would be equal. This is useful
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for experimental normalisation and will be discussed further in section 4.4.
Further results this year came from QCDSF [47] looking at the disconnected contributions

necessary to determine D(s)→ η(′)lν rates (using a relativistic smeared clover action for all quarks)
and from HPQCD on axial and vector form factors for Ds→ φ lν [48] (using HISQ). These form
factors add to the range of quantities that can be determined from essentially the same lattice QCD
calculation and tested against experiment with no free parameters.

3.4 Vcs and Vcd

Fig. 5b shows the current status of the direct determination of Vcs and Vcd using leptonic decays
of D and Ds mesons and semileptonic D→ π and D→ K decays, combining experimental results
with lattice QCD world averages given in sections 3.2 and 3.3. The results will be summarised in
terms of unitarity tests of the CKM matrix in section 5.

4. Bottom physics results

4.1 Spectroscopy

This year has seen progress on improving methods for b physics. The HPQCD collaboration
has now taken the NRQCD action to the next stage by determining the O(αs) corrections to the
sub-leading (v4) terms [49]. Improved analysis of the bottomonium spectrum was shown [36, 50]
including the hyperfine splitting (the mass difference between the ϒ and the ηb) and predictions
for D-wave states [51]. These calculations have been done on MILC configurations including u,
d, s and c HISQ quarks in the sea and with a further improved gluon action. Heavy-light physics
is underway on these configurations. The improvements to the action should reduce NRQCD
systematic errors to the level of 5 MeV when determining the difference between, say, the Bs

meson mass and one half the mass of the ϒ. This is not enough to distinguish the effects of c
quarks in the sea since they are expected from a perturbative analysis [52] to shift the ϒ by around
5 MeV but have little effect on the Bs. It might, however, be enough to see the effect of quenching
s quarks since, based on old results from quenching all 3 light quarks, this could affect this mass
splitting at the 10-20 MeV level [53], as well as affecting radial and orbital ϒ splittings at the 2-3%
level (relative to the 2S−1S splitting). It would be interesting to do a systematic analysis on n f = 2
configurations to see if an error in the comparison to experiment shows up here, since no effect
has so far been seen anywhere else. This would help to quantify the consequences of quenching s
quarks, since these cannot be easily estimated.

Both ETMC [9] and HPQCD [5] have given new results, to be discussed further below, using
relativistic approaches (twisted mass and HISQ respectively) for heavy quarks and extrapolating in
the heavy quark mass up to the b. The RBC/UKQCD collaboration have tuned their RHQ action
for b quarks and are now using that action for bottomonium and heavy-light physics [54].

A useful comparison between lattice QCD calculations is in the determination of the b quark
mass. The Alpha [55] and ETMC [9] collaborations presented new results on mb from configura-
tions that include u and d quarks in the sea. Alpha use HQET through 1/mb on the lattice and find
m(n f =2)

b (mb) in the MS scheme to be 4.23(15) GeV in agreement with the ETMC result of 4.29(14)
GeV. The ETMC result uses the twisted mass formalism for the heavy quarks, extrapolating up to
the b using a function with a known static limit.
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a)

however, we must update our earlier analysis to take ac-
count of the new value for r1 [10] given in Eq. (10) and
improved values for r1=a [13] given in Table I. [The
Wilson-loop paper uses some additional configuration
sets: from Table II in that paper, sets 1, 6, 9, and 11 whose
new r1=a’s are 1.813(8), 2.644(3), 5.281(8), and 5.283(8),
respectively.] We have rerun our earlier analysis, updating
r1, r1=a, and the c and b masses. The results are shown in
Fig. 5. Combining results as in the earlier paper we obtain a
final value from the Wilson-loop quantities of

!MSðMZ; nf ¼ 5Þ ¼ 0:1184ð6Þ; (46)

with "2=22 ¼ 0:3 for the 22 quantities in the figure. This
agrees very well with the result in the earlier paper,
!MSðMZÞ ¼ 0:1183ð8Þ, but has a slightly smaller error, as
expected given the smaller error in r1. This new value also
agrees well with our very different determination from
heavy-quark correlators [Eq. (38)]. A breakdown of the
error into its different sources can be found in Table IV of
[29] (reduce the r1 and r1=a errors in that table by one-half
to account for the improved values used here).

VII. CONCLUSIONS

In this paper, we improve significantly on our previous
determinations of the QCD coupling and c-quark mass
from heavy-quark correlators. This is principally due to
the inclusion of a new, smaller lattice spacing in our
analysis. We also generated results for a variety of quark
masses nearmc, allowing us to interpolate more accurately
to the physical value of mc. New third-order perturbation
theory makes R10 as useful now as R4, R6, and R8 were in
the earlier paper. Finally, in this paper, we fit multiple
moments simultaneously, determining consistent values
simultaneously for both the QCD coupling and the quark
masses for all moments. Previously we examined each
moment or ratio of moments independently, extracting
mc’s or !MS’s independently of each other. Our new re-
sults,

mcð3 GeV; nf ¼ 4Þ ¼ 0:986ð6Þ GeV;
!MSðMZ; nf ¼ 5Þ ¼ 0:1183ð7Þ;

(47)

agree well with our older results of 0.986(10) GeV and
0.1174(12), respectively [1].

The much heavier b quark is usually analyzed using
effective field theories like NRQCD or the static-quark
approximation. By using very small lattice spacings and
the very highly improved HISQ discretization for the heavy
quarks, we are able to extend our analysis almost to the
b-quark mass, using the same relativistic discretization that
we use for c and lighter quarks. A 1.5% extrapolation of
zð3; mhÞ, from the largest m#h

used in our fits to m#b
, gives

us a new, accurate determination of the b-quark mass,

mbð10 GeV; nf ¼ 5Þ ¼ 3:617ð25Þ GeV: (48)

This calculation demonstrates the utility of the HISQ
formalism for studying b quarks on lattices that are com-
putationally accessible today. This represents a break-
through for b physics on the lattice since far greater
precision becomes possible when all quarks are treated
using the same formalism, and that formalism is relativistic
and has a chiral symmetry. Even better would be to work
right at the b mass, as opposed to extrapolating from
nearby; this would require a lattice spacing of order
0.03 fm.
Both of our new c and b masses agree well with non-

lattice determinations from vector-current correlators and
experimental eþe% collisions. A recent analysis of the
continuum data gives [7]

mcð3 GeV; nf ¼ 4Þ ¼ 0:986ð13Þ GeV;
mbðmb; nf ¼ 5Þ ¼ 4:163ð16Þ GeV;

(49)

which compare well with our values of 0.986(6) and
4.164(23) GeV, respectively. This provides strong evidence
that the different systematic errors in each calculation are
understood.
Function zð$=mh;m#h

Þ is a by-product of our analysis.
It relates the MS quark mass mhð$Þ to the #h mass
[Eq. (7)]. We show our result again in Fig. 6 for $ ¼
3mh, as well as for $ ¼ mh and $ ¼ mh=2, which we
obtain by evolving perturbatively from $ ¼ 3mh. The
latter two curves are relatively flat, and the last surprisingly
close to 1 for most masses.
Questions have been raised about the way perturbation

theory is used in analyzing the perturbative parts of the
moments [30]. Like [7] we favor using larger scales than
mc for c-quark correlators, but, as we have shown, our
results are quite insensitive to $ over a broad range.
Furthermore, the fact that our results, from pseudoscalar-
density correlators, agree so well with the continuum re-
sults, from vector-current correlators, is also compelling

FIG. 6 (color online). zð$=mh;m#h
Þ versus m#h

(in GeV) for
three different values of $=mh. The curve for $ ¼ 3mh comes
from the best fit to the moments. The other curves are obtained
by evolving perturbatively from $ ¼ 3mh.

HIGH-PRECISION c AND b MASSES, AND QCD . . . PHYSICAL REVIEW D 82, 034512 (2010)

034512-11
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b)

Figure 6: Covering the region from charm to bottom: a) The ratio of the quark mass in the MS scheme at a
given µ to one half the pseudoscalar heavyonium mass as a function of the pseudoscalar heavyonium mass
(as a proxy for the heavy quark mass) [4]. Note how flat the curve for µ = mh is. b) The Heavy-strange
decay constant as a function of heavy-strange meson mass (as proxy for heavy quark mass) [5]. Note that
the curve peaks at the Ds.

These results can be compared to the HPQCD result of mb(mb)
n f =5 = 4.164(23) GeV [4],

obtained using current-current correlator methods with HISQ quarks on MILC n f = 2+1 configu-
rations and perturbatively matching to n f = 5. Here a range of heavy quark masses were explored
from c upwards at 5 different values of the lattice spacing, allowing the physical curve of the ratio
of the quark mass to one half of the pseudoscalar heavyonium mass to be mapped out. This is
interesting because it allows lattice QCD to ‘fill in’ the values between the two results at c and b on
which we have experimental information. What we see, reproduced in Fig. 6a, is that mηh/2mh(µ)

gives a very flat curve with value falling between 1.2 and 1.1 as mh is increased when µ = mh. This
is a well-defined and accurately quantifiable version of the hand-waving statement that "the heavy
quark mass is roughly half the heavyonium meson mass" and only possible from lattice QCD.

It would be useful to have accurate results for mb from NRQCD, Fermilab and RHQ methods
for comparison - these are underway.

4.2 Leptonic decays (to lνl)

Direct annihilation to a W is only possible for charged pseudoscalars. However it is still
possible and useful to calculate the equivalent matrix element for the neutral Bs meson in lattice
QCD and compare its value to that for the B. There are several new results this year for fB and fBs

and these are summarised in Fig. 7.
The two using nonrelativistic methods on the MILC n f = 2+ 1 asqtad configurations can be

directly compared. These are the HPQCD results using NRQCD b quarks (without the further im-
provements discussed above) with HISQ valence light quarks [56] and the Fermilab/MILC results
using Fermilab b quarks and asqtad light quarks [33]. The HPQCD NRQCD-HISQ results of fBs

= 227(10) MeV and fB=191(9) MeV supersede earlier NRQCD-asqtad calculations [57] using the
same methods - the error is improved by 50% because of better statistics and smaller discretisation
errors but the central values change very little. The Fermilab/MILC results of fBs = 242(10) MeV
and fB = 197(9) MeV are calculated on essentially the same set of a =0.12 and 0.09fm gluon fields
and also update earlier work. The Fermilab/MILC and HPQCD results agree reasonably well -
fBs values differ by 1.5 σ allowing for correlated statistical errors. In both cases the error budgets
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Figure 7: a) Comparison of lattice QCD results for fBs and fB and the experimental average for fB from
B→ τν decay, using Vub = 3.47×10−3. The lattice QCD world averages are fB=190(4) MeV and fBs=227(4)
MeV (see text), shown with dashed lines. b) The ‘spectrum’ of decay constants, using D/Ds/B/Bs world
averages from here, π/K from [31] and ηc, surprisingly close to J/ψ from experiment, from [2].

are dominated by other errors, presumably uncorrelated. For the NRQCD case the problem is the
unknown O(α2

s ) pieces of the perturbative matching of the axial current to the continuum. The
error allows for a coefficient at O(α2

s ) of 0.4 (the one-loop coefficient is around 0.1), uncorrelated
between the two lattice spacing values since it can vary with mba (the O(αs) coefficient varies from
0.1 to 0.15). For the Fermilab case the dominant errors are heavy-quark discretisation and tuning
and statistics. Their perturbative matching error allows for 0.1α2

s in the ratio of axial to vector
renormalisations, as described earlier for the D/Ds case.

fBs/ fB is determined to around 2% in both cases with values 1.188(18) for NRQCD-HISQ
and 1.229(26) for Fermilab-asqtad. Again this represents agreement at the 1.5σ level allowing for
correlated statistical errors. Now statistical errors are a more significant part of the total since the
renormalisation and heavy-quark discretisation effects largely cancel. Neither result for fBs/ fB is
sufficiently accurate to distinguish it from fDs/ fD or fK/ fπ although the statistical and systematic
correlations in the Fermilab/MILC results between the B and D calculations presumably mean that
the difference between their values of 1.229(26) for fBs/ fB and 1.188(25) for fDs/ fD is significant.
The Fermilab/MILC results will improve with values on additional finer MILC asqtad ensembles;
the HPQCD results will be updated with improved NRQCD on the HISQ 2+1+1 configurations,
exploring also improvements in renormalisation that may be possible with heavy-light current-
current correlator methods [58].

The Alpha collaboration gave an updated result from their HQET method for fB only, obtaining
fB=174(11) MeV [55]. This is done on the CLS n f = 2 lattices with 3 values of a from 0.075
fm to 0.05 fm and mπ values down to 270 MeV. The b quark is included in the static (infinite
mass) formalism using an action with smeared links. This improves the poor signal/noise for static
quarks which arises from the unphysical energy of the heavyonium state (with no kinetic term) that
contributes to the noise. Matrix elements of operators that give rise to 1/mb corrections to the static
limit are included after a nonperturbative determination of their coefficients. The result for fB is
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1.5σ lower than those from the 2+1 flavor nonrelativistic results discussed above.
Relativistic methods have yielded well-controlled results this year for the first time and these

look encouraging for the future. ETMC use HQET to extrapolate up to the b quark from quark
masses around 2mc using 4 values of a down to 0.05fm on n f = 2 lattices [9]. They include a
static result to bound the upper limit of the extrapolation. They average over two different methods
for fBs that give results 225(8) MeV and 238(10) MeV, possibly worryingly far apart given that
the (correlated) statistical errors dominate. The final result for fBs is 232(10) MeV and a separate
determination of the ratio fBs/ fB is used to obtain fB = 195(12) MeV. HPQCD use HISQ quarks [5]
with masses from slightly below mc up to close to mb to map out the heavy-strange decay constant
as a function of the heavy-strange meson mass (as a physical proxy for the heavy quark mass).
They use 5 values of a down to 0.045 fm on n f = 2+ 1 configurations and limit mba to values
below 0.85. The method relies on the finding that fDs is very insensitive to sea quark masses [2] to
avoid an extensive study as a function of sea light quark mass. The extrapolation to the b uses (and
tests) HQET formulae and obtains fBs = 225(4) MeV, significantly more accurate than previous
results. Surprisingly it provides the first really solid demonstration (although most earlier results
have indicated this) that fBs < fDs with the ratio fBs/ fDs = 0.906(14). In fact fDs seems to be close
to the maximum of the heavy-strange decay constant curve (see Fig. 6b), which shows a rapid rise
from lower masses up to fDs and then a rather slow fall down to fBs , much slower than that of
leading-order HQET. Since the ratios of heavy-strange and heavy-light decay constants for B and
D differ very little, note that it is also true that fB < fD.

To obtain a world-average value of fBs I take an error-weighted average of the three n f =

2+1 results, allowing 100% correlation between the statistical errors of the Fermilab and NRQCD
results. The HPQCD-HISQ result I treat as independent since it relies on results on finer lattices.
The world-average is then fBs = 227(4) MeV. For a world-average value of fB I average the Fermilab
result with the HPQCD value of fB = 189(4) MeV [56] that uses the HISQ value for fBs and the
NRQCD result for fBs/ fB. This gives 190(4) MeV. Both of these new world-average values are
lower than last year by 1-2σ (see for example [59]) and the error has improved by a factor of 3.
Note that the lattice QCD result for fB is now clearly below 200 MeV.

Experimental observation of B leptonic decay to lν l is extremely difficult and the errors on the
results consequently rather large. Since the rate is proportional to m2

l (eq. 3.4) it is not surprising
that the mode that has been seen is B→ τν . The PDG [38] give the average of the BaBar and
Belle branching fractions as 1.65(34)×10−4. Putting in the kinematic factors and B lifetime, this
corresponds to:

fB|Vub|= 0.97(10) MeV. (4.1)

Vub is also rather uncertain with sizeable differences between that extracted from inclusive and
exclusive (using lattice QCD) B semileptonic decay modes. The PDG [38] give a result for Vub

from requiring unitarity of the CKM matrix as 3.47(16)×10−3. This central value is fairly close to
that from exclusive decays - the inclusive result is higher at 4.3(4)×10−3. Combining the unitarity
Vub with eq. 4.1 gives fB,expt = 280(33) MeV which is over 2.5σ higher than the lattice QCD result
above. This is a cause of ‘tension’ in the CKM picture [20] which will need improved experimental
results to resolve, although understanding the ambiguity in Vub would also help. From eq. 4.1 and
the lattice average for fB above, we can derive Vub = 5.1(5)×10−3, not that much worse than other
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direct determinations.
Improvements to lattice QCD B/Bs decay constants will continue - it seems likely that rela-

tivistic methods will provide the best way forward for the absolute value of fBs . The ratio of fBs/ fB

may be better calculated with nonrelativistic methods and can certainly be obtained to 1% errors
working closer to the chiral limit. However, it should be remembered that the ratio that is really
required for combination with experiments on Bs/Bd mixing is the ratio of 4-quark operator matrix
elements and this is harder [57].

4.3 B(s)→ µ+µ−

An important leptonic mode for neutral B mesons is decay to µ+µ−. In the Standard Model
this proceeds via Z0 penguin and box diagrams [60] and so is expected to be sensitive to new
physics. The effective weak Hamiltonian that gives rise to the decay for Bs is then

Heff =−
GF√

2
α

2π sin2
θW

V ∗tbVtsY (xt)(bs)V−A(ll)V−A +h.c. (4.2)

where Y is a known function of the mass of the top quark and xt = m2
t /m2

W . The 4-fermion operator
here has 2 quarks and 2 leptons and so, as far as QCD is concerned, it looks like an operator for
quark-antiquark annihilation. The matrix element is then proportional to the decay constant fBs .
The rate, however, depends on CKM elements V ∗tbVts which are derived from the Bs mixing rate
(∆Ms) along with a lattice QCD calculation of the matrix element of the 4-quark operator that
corresponds to the box diagram for that process, and is parameterised by f 2

Bs
BBs . BBs is known

as the ‘bag parameter’. Buras pointed out [61] that in fact the best way to determine the rate for
Bs→ l+l− was to take a ratio to the mixing rate. Then the CKM elements cancel and so does fBs

and the SM rate for Bs→ µ+µ− is proportional to the bag parameter, BBs . A determination of this
requires lattice QCD (despite the confusion over this in the literature).

Only one such lattice QCD calculation including sea quarks has so far been done [57], by
the HPQCD collaboration, as part of a calculation to obtain the mixing matrix elements for ∆Ms.
This yields the current best estimate of the Bs bag parameter, B̂Bs = 1.33(6) giving a SM branching
fraction for Bs → µ+µ− of 3.19(19)× 10−9. The calculation used NRQCD b quarks and asqtad
light quarks and perturbative renormalisation of the 4-quark operators on MILC n f = 2+ 1 asq-
tad configurations. A significant part of the error was from statistics and will be reduced in new
calculations underway on the new n f = 2+1+1 HISQ configurations.

The observation of Bs→ µ+µ− is a key aim of the LHC experiments. This year [62] LHCb
and CMS hav improved their limits on the branching fraction to within a factor of 3 of the Standard
Model rate from lattice QCD. In the absence of BSM physics, LHC expects to see the process in
2012, and then the comparison of theory and experiment will become more critical, and improved
errors on the lattice QCD side may be very important.

4.4 Other decay modes and mixing

The Fermilab Lattice/MILC collaborations discussed their progress on the calculation of 4-
quark operator matrix elements for Bs and Bd mixing, using Fermilab b quarks and studying the
complete set of 5 ∆B = 2 operators [63]. There was also an update on B→ Kl+l− form factors
which may be sensitive to new physics [64].
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The calculation of the ratio of scalar form factors for Bs→Ds and B→D turns out to be useful
for the experimental normalisation of the Bs→ µ+µ− mode [65]. QCD sum rule calculations [66]
expect deviations from 1 in this ratio to be related, and of similar size, to the 20% u/d− s effects
seen in decay constants. Instead, as discussed in section 3.3, very little spectator quark mass
dependence is seen in heavy form factors [45] to a high level of accuracy. Fermilab/MILC have
now done an explicit calculation of these B and Bs semileptonic modes [67] and indeed find no
significant deviation from 1: f Bs

0 (m2
π)/ f Bd

0 (m2
K) = 1.046(46).
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Figure 8: a) The spectrum of gold-plated mesons from lattice QCD, updating [68] to include the prediction
of D-wave Upsilon states [51]. b) Tests of unitarity of rows and columns of the CKM matrix now possible
using lattice QCD results, except for Vud from nuclear β decay [38]. I have taken direct determinations of
Vus, Vcd and Vcs from semileptonic modes [35, 39, 43], although there is no particular reason to prefer those
over leptonic modes. Vts and Vtd come from lattice QCD Bs/Bd mixing calculations [38, 57] and Vcb from
B→D∗ decays (39.7(1.0)×10−3 [69]) but these are too small to have much impact on row/column unitarity.
Unitarity triangle tests, from orthogonality of columns 1 and 3, are discussed in [20].

5. Conclusions

Key results can be summarised in three plots, all showing significant progress since last year.
Fig. 8a updates the spectrum of gold-plated mesons, which includes many c and b states. Fig. 7b is
a similar plot laying out the picture for decay constants, now rather impressive for pseudoscalars.
It is clear that similarly accurate results on electromagnetic annihilation of vector mesons would
significantly enhance our confidence in lattice QCD results and provide excellent tests of QCD
itself. Fig. 8b shows the tests of unitarity of the first and second rows and columns of the CKM
matrix that are now possible at the 5% level using lattice QCD and experiment.
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