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Excited hadrons are interesting to study on the lattice, as their propertiestdancalculated
using perturbation theory and exhibit many features of strongly coup&d. @urthermore, there
are several unresolved questions related to excited hadrons. Foplexanost quark model calcu-
lations of baryon spectra predict considerably more states than havelserved experimentally.
This may be either because the quark models possess unphysical gxgasdef freedom or be-
cause most experimental analyses have focused on states which dézay Aosummary of the
current status of this ‘missing resonance’ problem can be found i Hef.

In addition to missing resonances, it remains a puzzle why the quantum raigfbiarown
hadrons can be predicted from the constituent quark model, which assiahenesons contain two
and baryons three quarks. States which have quantum numbers wich filcthese predictions
are said to be ‘exotic’ and are the subject of experiments at JLab, CBBS Ill, and PANDA
(For an overview see Ref. [2]).

Lattice QCD calculations are necessarily performed at finite lattice spaajigd finite sys-
tem size ). Extracting infinite volume resonance parameters from this finite volume daifa is d
ficult. The spectrum of the QCD Hamiltonian in infinite volume consists of stabldeshmagron
states and a continuum of multi-hadron states above threshold. The situafioiteirvolume is
quite different; resonance states which were unstable in infinite volumeoareigenstates of the
finite volume Hamiltonian. Near threshold the finite volume energy eigenvaleatisiorted from
their non-interacting behavior as the spatial extent of the system is vartedra‘avoided level
crossing’ occurs. An analogous situation occurs in the study of stremkbrg in QCD [3], where
an avoided level crossing occurs as the length of the string is varied.

Somewhat more formally, resonances are observed by experimergidsasiations in the
cross section as the center-of-mass energy moves through the resonass. This can be inter-
preted as a singularity in th&matrix, which (by the LSZ reduction formula) corresponds to a
singularity in then-point correlation functions of the underlying quantum field theory. Thgus
larity structure of a two-point correlation function with suitable quantum nusiisenade apparent
by employing the Kallen-Lehmann representation:

/ du® p(u u2+|s @)

whereA(p) is the two-point function (the spinless case is shown here) in momentum, spate
p(u?) is the spectral density. In infinite volumm u?) consists ofd-functions corresponding to
stable particles below threshold and a continuum of states above threshold.

Conversely, in finite volume(u?) consists entirely oB-functions corresponding to stable
states. However, infinite volume scattering phase shifts may be extractedirfiite volume lattice
data below inelastic thresholds. This method [4] relates infinite volume elastiersitg phase
shifts to the distortions of finite volume energy spectrum near thresholds medtabove.

While elastic scattering phase shifts may be extracted in this manner, systematitatiing
infinite volume resonance parameters from finite volume data is still an actiseéresearch [5, 6,
7]. Regardless, an important first step is to extract the spectrum of Q&briite box. This is hard
enough, as there are many sources of systematic error which muchtb@ledn As resonances are
expected to be spatially extended objects, large volumes are needecriruanth, extrapolations to
the physical quark masses are complicated by the inapplicability of chiealtiz# theory at scales
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Figure 1: Preliminary results for the chiral behavior of some excitegbon states [11]. Results for the pion
channel are shown on the left, while results for the kaon rbbare shown on the right. These spectra are
calculated on ensembles with= a; = 0.13fm andLs ~ 2.2fm, whereas anda; are the spatial and temporal
lattice spacings (respectively) ahgis the spatial lattice extent. Multi-hadron operators areimcluded in
analysis, which may result in systematic errors due to Hulelseffects.

around and above,. Additionally, higher energy resonances may suffer from large digateon

effects so the continuum limit must be taken. Finally, in order to extract theyemné an excited
state, a large basis of interpolating fields must be employed, and contaminatiwmuhwanted
excited states is present.

Progress has been made recently toward determining the pion mass degeotisome low
lying hadron resonances. Current Lattice QCD simulations are perfoamedphysically large
light quark masses and physical results must be obtained by extrapolating torrect values.
As discussed above, the use of chiral effective theory to predictéperdience of excited state
energies on the quark mass is limited. Indeed, if thresholds open up as theass is decreased
toward the physical point, the chiral behavior of excited states may notevanalytic. Therefore,
this dependence is largely unexplored and must be determined empiricalimiRary calcula-
tions of the chiral behavior of some excited meson states are shown in kigilé,examples for
baryons are shown in Fig. 2. Additionally, a preliminary scan of excitegdraspectra at several
pion masses can be found in Refs. [8, 9] while preliminary result®foresons and charmionium
states (without disconnected diagrams) can be found in Ref. [10]. #owal of these examples
do not include multi-hadron operators in their analyses, which may introdweshold-related
systematic errors.

We now discuss in more detail the calculation of excited state energies in a fahitee,
Energies in lattice field theory are typically extracted from the exponentiabffaof temporal
correlation function€(t) = <ﬁ(t)ﬁ_(0)> between interpolating field& with particular quantum
numbers. The energy of the lightest state with these quantum numbers iseditaim the asymp-
totic (in euclidean time) single-exponential behavior of the correlation function. Excited states,
however, can be extracted by forming a correlation maijxt) = (ﬁi(t)ﬁ_’j(o» between a set of
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Figure 2: Preliminary results for the chiral behaviour of some extibaryon states. Results for the even
parity nucleon channel are shown on the left [12] while sténehe/A channel [13] are shown on the right.
Results were obtained on ensembles vaigh= & = 0.09fm andLs = 2.9fm. On both plots, multi-hadron
thresholds are indicated. For thechannel, a partially quenched strange quark was used todeps the
physical kaon mass. No multi-hadron operators were incliéhe analysis, which may result in systematic
errors due to threshold effects.

interpolators{ & } and solving the generalized eigenvalue problem (GEVP) [14, 4, 15]

C(t)vn(t,to) = An(t,t0)C(to) Vn(t, to) )
lim EZ"(t,t0) = im —aInAn(t,to) = En,

whereE, is the energy of theth state interpolated by the; }.

The asymptotic corrections & ff(t,to) can take different forms based on the relatiotydd
t. Generically, it has been proven [4] that asymptotica‘fﬁf(t,to) = En+ 0(e BBty where
En.1 is the energy of the state abofg. This correction may be large in systems with closely
spaced energy levels. However, if the conditigr> t/2 is maintained, it has been proven [15]
thatEs "' (t,to) = En + (e (Evn-Enlt) whereN is the dimension of the GEVP. In this manner, the
corrections can be systematically improved by increasing the size of the B&# However, this
may increase the condition number of the resultant correlation matrix, resintiager statistical
errors on the GEVP eigenpairs.

Due to these two considerations, selecting a GEVP basis is a delicate pecadmentioned
above, increasing the number of operators in the basis may decreasytmgtatic corrections
but care must be taken to prevent a large condition number. A simple precea construct a
basis of operators amounts to applying different levels of Gaussian isigedfowever, in the
case of pseudoscalar static-light mesons, it has been suggesteddtlBjt¢npolating operators
constructed from different smearings may have poor overlap with exsitgéds. While ideal for
extracting ground state properties, other types of interpolators may be oitable for excited
states. Spatially extended operators designed to transform irreducdsy lattice symmetries [17,
18, 19] have been effective in extracting higher excited states.

The GEVP may also be used to define ‘optimized’ interpolating fieldsqZf8] = (i)' (t,to) &,
wheret andty are typically fixed. Correlation functions of these optimized fields are theodilg
elements of the rotated correlation matrix and have increased overlap witthteate. However,
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Figure 3: Results from a % 3 GEVP in a toy model consisting of 20 evenly spaced energjideVop row:
The effective energies for the first three levels when theimaf overlaps (Uin) is given canonical values.
Bottom row: The effective energies when the overlaps of all operatatis tlve first level (1, i = 1,2,3)

are decreased by an order of magnitude. In the case where-lgitaystate has small overlaps with all
operators in the basis, the asymptotic behaviour does hat s@til large times. In realistic computations
statistical errors grow exponentially with time and suclm4agymptotic behaviour could be mistaken as a
‘false plateau’.

mixing can occur and the off-diagonal elements of the rotated correlatioixmaist be small to
extract excited state energies.

In practice, the maximum temporal separation at which the correlation fusa&mnbe evalu-
ated is limited by the signal-to-noise problem (see e.g. Refs. [20, 21]) arfohite temporal extent
of the lattice. It is therefore crucial thEﬁ”(t,to) behaves asymptotically as quickly as possible.
Although the asymptotic corrections to effective energies in the GEVP aepémtlent of which
interpolators are included in the set, the time at which asymptotic behavior seds vagy. In
particular, if there is a state beld#, with which the operators have little overlap, the asymptotic
behavior may set in only at large times.

To illustrate this point we consider a toy model, which is solved numerically (v which
have been considered in Ref. [16]). The model is specified by prayahinranalytic expression for
the correlation matrix

CHP(1) = S YmPjme =, (3)

wherergEyn, = m, m=1...20 and the 3 20 matrixy is chosen empirically from an approximate
calculation of the overlaps in the psuedoscalar static-light meson systénT fi6results from the
3 x 3 GEVP are shown in Fig. 3. The effective energies correspondingotonal’ values of the
Y matrix plateau rather quickly and have corrections of a standard formn\hei = 1,..3 are
decreased by two orders of magnitude the situation is quite different, eovead the asymptotic
behavior sets in only at large times. While statistical errors are not includbdimodel, it seems
plausible that in the second case with statistical errors one may mistake yraptatic behavior
as a ‘false plateau’, illustrating the danger of states with small overlaps witheadiperators in the
basis.
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Figure 4: Types of valence quark line diagrams which must be includedfcomprehensive scan of the
finite volume excited hadron spectruineft: Valence quark line connected and disconnected diagrams co
tributing to a nucleon-pion correlation functioRight: Connected and disconnected diagrams contributing
to a flavor singlet meson correlator.

Given these considerations, a reliable calculation of the hadron speatsame threshold
should include both single and multi-hadron interpolating operators (ahdjp&pther ‘exotic’ op-
erators as well [22]). These multi-hadron operators require all-torafiggators, which describe
quark propagation from all initial sites to all final sites. This is to be contdasith ‘point-to-all’
propagators, which describe quark propagation from a single initial sét fioal sites. All-to-all
propagators are also required in flavor-singlet single hadron stadesrartherefore necessary for
a comprehensive scan of the meson spectrum.

The situation can be illustrated by examining valence quark line diagramss&ciudiagrams
are shown in Fig. 4. When evaluating e.g. a nucleon-pion correlationiéurigoth valence quark
line connected (where all valence quark lines propagate between the a@mitidinal times) and
valence quark line disconnected diagrams will contribute. Similarly, for flavmlet mesons both
connected and disconnected diagrams will contribute.

Quark propagators are obtained by inverting the lattice Dirac matrix. This matoixlarge
(12x (Ls/as)® x (Lt/a;)) dimension and its inverse cannot be calculated directly. Instead, the action
of the inverse on a ‘source’ vector can be obtained by the use of suétlgaethms. Clearly, it is
not feasible to evaluate all-to-all propagators naively, i.e. by invertindl@mx (Ls/as)® x (L¢/a))
sources, each with support on a single space-time point, spin, and color.

A novel alternative to naive all-to-all has recently been proposed [Z3jis ‘distillation’
method calculates quark propagation from a subspace spanned by thgnigweigenmodes of
the gauge-covariant Laplace operator to all sites. The projection ontsuthépace may be viewed
as a ‘smearing’ procedure which creates interpolators with enhanegthapwvith the low-lying
states of interest. Indeed this projection operation preserves all the syesdtthe unsmeared
propagator and the width of the smearing operator may be controlled by mhigenwf low-lying
modes contained in the subspace (see Fig. 5).

Distillation allows one to computexactall-to-all propagation from the subspace spanned by
the low-lying modes of the gauge-covariant Laplace operator and escaitumber of Dirac matrix
inversions proportional to the dimension of this subspace. Unfortunatelypumber of modes
required to maintain a constant smearing radius increases with the spatialevols the cost
of each Dirac matrix inversion is also proportional to the volume, the totalafdsis algorithm
scales like~ LS. This can be seen by examining the density of the low-lying eigenmodes/mase
volumes, shown in Fig. 5.

Nevertheless, distillation has been useful in small spatial voluineS 2.5fm). Results from
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Figure5: Left: Profile of the smearing operator as a function of the numbeigenvectors on ans =2+ 1
lattice withas = 3.5a; = 0.12fm andLgs = 2.4fm (see Ref. [23]).Right: Low-lying eigenvalue spectra of
the gauge covariant Laplace operator for two volumes, téieen Ref. [24]. Hereas = 3.5a = 0.12fm and
Ls=1.4,1.9fm. The number of modes contained between the dashedtioesses linearly with the spatial
volume.
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Figure 6: Results of a preliminary calculation of the isoscalar megmectrum (Taken from Ref. [28]) on an
ngs =2+ 1 lattice withag = 3.5a; = 0.12fm, m; = 400MeV, and_s = 1.9fm. L eft: Valence quark connected
and disconnected contributions to an isoscalar scalaeledion function. Disconnected contributions are
labeled D’, while connected contributions are label&.* Right: the effective energy for the lowest states
in then andn’ meson channels. At = 3 approximation of the temporal derivative is used.

a preliminary calculation of isoscalar meson spectra using distillation are sinokig. 6, while
preliminary charmonium results which use distillation are shown in Fig. 7. Distilldtamalso
been used in calculations of— 7T scattering phase shifts (see Fig. 11 and Refs. [25, 26]) as well as
preliminary excited baryon [9] and isovector meson [27] spectrum cdicoka

Clearly, in order to move to large volumes a new all-to-all algorithm must be evi®ne
promising candidate is the ‘stochastic LapH’(Laplacian Heaviside) appr@4]. This introduces
noise in the subspace spanned by the low-lying modes only. Of courseocibis may be ‘di-
luted’ [30] in the spin, time, and eigenvector indices. The superiority ofettgses of diluted
stochastic sources over conventional dilution is illustrated in Fig. 8.

Furthermore, the volume dependence of the stochastic LapH method iselglatiid for a
moderate amount of dilution. Formally, this means that the number of dilution poogg@nd thus
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Figure 7: Preliminary results for charmonium spectra (taken from. [Rd]) on ann; = 2+ 1 lattice with
as = 3.5a = 0.12fm, my = 400MeV, andLs = 1.9fm. Multi-hadron operators were not included in the
analysis and non-interacting multi-hadron energies anetgel by dotted lines.
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Figure 8: Properties of ‘stochastic LapH’ noise, taken from Ref. [2U¥ft: The ratio of the error using
stochastic LapH estimates to the error using the exactl{gigtn) method for a typical observable (trian-
gles), plotted againﬁgl/z, whereNp is the number of dilution projectors. Conventional dilutiGquares)
is also shown for comparison. Results were obtained pn-a2-+ 1 ensemble wittas = 3.5a; = 0.12fm,
m; = 400MeV, and_s = 1.9fm. Right: the same quantity for two volumes using stochastic Lapldeand
dilution. Results were obtained oma = 2+ 1 ensemble wittas = 3.5a = 0.12fm, m; = 400MeV, and
Ls = 1.9fm(triangles) and 2fm (squares).

the number of inversions) may be held constant as the volume is increasealjtvdtiyrading the
quality of the stochastic estimate. The cost now scales b (due to the cost of each inversion)
rather than the- LS required for exact distillation. This mild volume dependence is demonstrated
in Fig. 8.

Of course, in our estimate of the cost scaling, we have considered thef tlhs Dirac matrix
inversions only. While at moderate lattice volumés £ 3fm) this dominates the computational
cost, the calculation of the Laplacian eigenpairs must be taken into accotig.isTtypically
done using a variant of the Lanczos algorithm, with some form of polynomegigmditioning. In
order to ensure numerical stability, a global reorthogonalization of thedamvectors must be
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Figure 9: Comparison of stochastic LapH and distillation for discected diagrams (taken from Ref. [31])
on ann; = 2+ 1 lattice withag = 3.5a; = 0.12fm, m; = 400MeV, and_s = 1.9fm. Results using distillation
are shown with black circles, while the ideal stochastic Haplution scheme is shown with with blue
triangles. The left plot shows the ‘box’ diagram contrilutito | = O 11— 71 scattering while the right
plot shows the disconnected contribution tb & O scalar correlation function. In the case of the scalar,
the stochastic LapH dilution scheme requires 1024 invassper configuration while the distillation result
requires 16384.

performed periodically. This reorthogonalization alone scalesfkso at larger volumes the cost
of generating the Laplacian eigenpairs may become significant.

Apart from the valence quark line connected observable shown in FigisSBmethod is also
adequate for the estimation of disconnected diagrams. Flavor singletatiomefunctions con-
taining disconnected diagrams have a severe signal-to-noise problene, e&iince contains a
component which is independent of the temporal separation. Therefgee the variance of the
exact all-to-all result is large, which allows one to reasonably estimate degg@ms using a mod-
erate amount of dilution. Indeed, in Fig. 9 it is shown that an error similar texthet distillation
result can be obtained stochastically with e.g. a faetdk6 fewer Dirac matrix inversions per
configuration.

After tests confirmed its utility, the stochastic LapH technique was applied tolianjirary
calculation of the meson spectrum in a larger volume, the results of whicthawendn Fig. 10.
Although multi-hadron operators are not yet included, such a calculataridanot have been
feasible without the stochastic LapH approach.

Of course, there has been work on the inclusion of multi-hadron opsrasowell. The sim-
plest system which exhibits mixing between single- and multi-hadron interpolfils is the
I =1 mm— 1 (p) sector. Several studies of tiemeson [33, 34, 35, 36] have been presented at
this conference. A summary of the unquenched results as well as resaftafsmaller volume
calculation of thd = 1 m— 1T phase shift using distillation are shown in Fig. 11.

Flavor singlet single hadron correlation functions also require valemaekdine disconnected
diagrams and can similarly be computed. Not only are flavor singlet mesatrapeteresting
in their own right, but may also appear in other channels as multi-hadrory gecduct states.
To this end, flavor singlet interpolating operators must be studied bottstaame with non-zero
spatial momentum if they are to be included as multi-hadron states in a GEVPiandysne
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Figure 12: Preliminary results which require valence quark line distwrcted diagrams using the stochastic
LapH method. Top Row: Effective energies from a 5x5 GEVP in the Isoscalar psecalas sector rf
mesons) with one unit of lattice momentum, taken from Re§].[Results are from an; = 2+ 1 ensemble
with ag = 3.5a = 0.12fm, m; = 400MeV, andLs = 1.9fm. Bottom Row: Effective energies from a 4x4
GEVP in the isoscalar scalar sector (taken from Ref. [32]jrmnsame ensemble. The basis of operators
used in this analysis consists of a loecalmeson operator, twb= 0 71— 7T meson operators, and a scalar
glueball operator constructed from the low-lying eigeneal of the gauge-covariant Laplace operator. The
mixing between all three types of operators is significant.

preliminary results for movingy mesons are shown in Fig. 12. Such a calculation is complicated
by the reduced symmetry group of particles in motion and operators whigfdramaccording to
irreps of the lattice little group must be constructed for various lattice momenta [37

Fig. 12 also shows a first glimpse at a more realistic spectrum calculation invialiime,
specifically the isoscalar-scalar (vacuum) sector. This channel isydarticdifficult as glueball
states are present, in addition to single and multi-hadron states. A realistitatialtof the spec-
trum in this channel therefore requires interpolating fields with a reasmoabrlap to these three
types of states. Results of a preliminary such calculation are shown in Figli&re a GEVP
analysis was performed which contained two loecainjeson) operators, twlo= 0 71— 1T operators
with equal and opposite momenta, and a scalar glueball operator cremtgtheslow-lying eigen-
values of the gauge covariant Laplace operator. Indeed, signifitiaitg was found between all
three types of operators in this channel.

Apart from finite volume energies, matrix elements of local operators betfireite volume
Hamiltonian eigenstates can also be calculated. In general, it is non-trivijadiusly relate
these quantities to those which have a well-defined infinite volume limit, but ndesshiéhese
matrix elements may have phenomenological implications. Apart from the wedepted here,
preliminary calculations of transitions between excited and ground statésh(ndyglect the effect
of disconnected diagrams) have been performed in the nucleon amdarfiam sectors [39, 40].

The situation is somewhat simplified for matrix elements of the light-light axial auive-
tweenB and B* mesons. First, no disconnected diagrams contribute to the required thiree-p
correlation functions. Secondly, radial excitations of pseudoscalér Bggat mesons can only de-
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Figure 13: Effective matrix elements of the light-light axial currdgtween radial excitations &* and

B mesons in the static limit. These results (taken from Re3])[4re from ann; = 2 ensemble with

as = a = 0.065fm, m; = 447MeV, andLs = 2.1fm. Although the renormalization factors for this lattice
discretization are known non-perturbatively, only bargrira&lements are shown here for illustrative pur-
poses. Nonetheless, since the axial current is taken hesr@momentum transfer, these matrix elements
are multiplicatively renormalized only and ratios betwéane matrix elements are renormalized quantities.

cay strongly via the emission of two pions. At pion masses which are largeyarsm that the first
radial excitation is significantly below the two-pion threshold, this excitation lslest@nd matrix
elements of the axial current involving this state and the ground state hagk defined infinite-
volume limit. Results from a preliminary calculation of these matrix elements are shdvig. 13
where rather than effective energies, effective matrix elements arecpldttese effective matrix
elements [15, 16] are also obtained from solutions of the GEVP and aredefs

Mr?lfnf(t) = Rm(tvtO)Rn(tvtO) X (Vm(t,to),C3pt(t,to)vn(t,to))7 (4)

where parentheses denote an inner product over the GEVP indigi¢do) are GEVP eigenvec-
tors, andRn(t,to) are normalization factors constructed to cancel the asymptotic time dependenc
Unlike the effective energies, here the conditign- t/2 is not required to reduce the asymptotic
corrections, but must be at least larger th&n The asymptotic behavior of this effective matrix
element is proven [15] to B (t,to) = (Bf, m|A;|B, n) + &(e~(En+1-Emnlo) whereA is the light-

light axial current, whiléB;’, m) and|B, n) are finite volume Hamiltonian eigenstates corresponding
to radial excitations of static-light zero-moment@handB mesons, respectively.

The required matrix of three point correlation functions is give@fﬁé(t) = <6’ik(2t)Ak(t)6_’(O)>,
where{ 0¥} and{6;} are sets of interpolating operators BrandB mesons, respectively. Since
the three-point correlation function contains two separations which bothlmeusken large, the
conditionty < t means that in terms of the total separatigs- 2t the asymptotic correction to
M (t,to) is @ (e~ (Enii-Emn)ts/2) compared with the (e~ (En+1-Enlts) discussed earlier for effec-
tive energies.

It should be noted that for matrix elements for whigh= E,,, the asymptotic corrections may
be improved [41, 16, 42]. This entails the use of a summed insertion wheeadhsfC3P!(ty,t5),
we employD3P!(t) = 3, C3P'(t +t1,t1). Using this summed insertion with the GEVP it is possible
to obtain an asymptotic correction which is proven [16] toch@ (Bv+1-Enb) as in the effective
energies. However, effective matrix elements constructed from this suimsertion are typically
noisier, as a temporal derivate must be taken numerically.

In conclusion, excited hadron spectroscopy in Lattice QCD is a field whichrigntly evolv-
ing. While the systematic extraction of infinite volume resonance parametendifiibe volume
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energy spectra remains a difficult problem, progress has been madecixtithetion of finite vol-

ume energy spectra from lattice data. One of the major sources of difficultiglculating finite

volume energy spectra in Lattice QCD is the need to include both single and nudgrhimter-

polating fields in a correlation matrix analysis. The requires the evaluationeficaquark line
disconnected diagrams which require the knowledge of quark from allligfigece-time points to
all final space-time points.

Although all-to-all propagators cannot be calculated naively, an effisimchastic algorithm
(stochastic LapH) has been developed which requires a computaticstathad scales linearly
with the spatial volume. This technique (as well as others) has enabled pegljnalculations
of spectra in systems which require disconnected diagrams, such hs-tBescalar sector and
the p-meson sector, where multi-hadron diagrams should be included in the bagtisrpolating
fields. Finally, apart from finite volume energies, transitions between fioiteme Hamiltonian
eigenstates can be calculated.
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