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Nonperturbative QCD corrections are important to many low-energy electroweak observables, for
example the muon magnetic moment. However, hadronic corrections also play a significant role
at much higher energies due to their impact on the running of standard model parameters, such as
the electromagnetic coupling. Currently, these hadronic contributions are accounted for by a com-
bination of experimental measurements, effective field theory techniques and phenomenological
modeling but ideally should be calculated from first principles. Recent developments indicate that
many of the most important hadronic corrections may be feasibly calculated using lattice QCD
methods. To illustrate this, we will examine the lattice computation of the leading-order QCD
corrections to the muon magnetic moment, paying particular attention to a recently developed
method but also reviewing the results from other calculations. We will then continue with several
examples that demonstrate the potential impact of the new approach: the leading-order correc-
tions to the electron and tau magnetic moments, the running of the electromagnetic coupling, and
a class of the next-to-leading-order corrections for the muon magnetic moment. Along the way,
we will mention applications to the Adler function, which can be used to determine the strong
coupling constant, and QCD corrections to muonic-hydrogen.
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Nonperturbative QCD corrections to electroweak observables Dru B. Renner

1. Introduction

Many precision experiments are increasingly becoming sensitive to nonperturbative QCD cor-
rections. For example, the measurement of the magnetic moment of the muon currently shows a
discrepancy with the standard model of over three standard deviations. Its theoretical uncertainty is
dominated by hadronic effects, making the muon g -2 a prominent example of the importance of a
fully nonperturbative determination of hadronic corrections. This is just one example. The signif-
icance of QCD corrections to otherwise precision observables will increase with the experimental
programs envisioned for the future. In many cases, the discovery of physics beyond the standard
model may depend on accurate control of these hadronic effects.

In these proceedings, we will discuss several opportunities for lattice QCD calculations of
hadronic corrections to important measurements that may in fact be more feasible than previously
thought. The QCD corrections to the muon g -2 will serve as a concrete example. This will allow us
to identify an issue that makes the calculation of these quantities more difficult and then describe a
modified method that was introduced to alleviate this problem [1]. Additionally, there is a growing
lattice effort on precisely this quantity and we will review the latest results.

After having laid the groundwork with the muon g -2, we will continue with several addi-
tional examples that illustrate the potential impact of the modified technique. We will examine
the leading-order hadronic corrections for the electron and tau magnetic moments and the leading
QCD contributions to the running of the QED coupling. Additionally, we will note applications to
the Adler function, the determination of the strong coupling constant and the QCD corrections to
the energy levels of muonic-hydrogen. We will then close with a calculation of the next-to-leading-
order vacuum-polarization corrections to the muon g -2.

2. Leading-order QCD correction to the muon magnetic moment

The BNL measurement of the anomalous magnetic moment of the muon aµ = (gµ −2)/2 [2]
and the standard model estimate thereof [3] differ by more than three standard deviations. This
discrepancy may indicate physics beyond the standard model, but making such a statement defini-
tively requires a thorough understanding of all sources of uncertainty and ideally a significantly
larger discrepancy. The experimental community is pursuing two future muon g -2 experiments at
Fermilab [4] and J-PARC [5], aiming to improve the experimental precision on aµ from 6.3 ·10−10

to (1−2) ·10−10. Since aµ ≈ 1.2 ·10−3, the new experiments will reduce the relative precision from
0.5 ·10−6 to 0.9 ·10−7. At this precision, the comparison between theory and experiment would be
dominated by the standard model uncertainties alone, hence improvement from the theory side is
highly desirable.

The value of aµ receives contributions from all parts of the standard model, each contributing
to the theoretical uncertainty as shown in table 1. Quite clearly, the standard model uncertainty is
overwhelmingly dominated by hadronic physics. The total QCD contribution aQCD

µ can be orga-
nized as an expansion in the QED coupling α as follows

aQCD
µ = α

2A(2)
µ +α

3A(3)
µ +O(α4) = a(2)µ +a(3)µ +O(α4) , (2.1)
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Contribution Error [10−10]

QCD-LO 5.3
QCD-NLO 3.9
QED/EW 0.2
Total 6.6

Table 1: Standard model uncertainties in aµ [3].
The contributions QCD-LO and QCD-NLO refer
to a(2)µ and a(3)µ in equation 2.1. All remaining
contributions are collected together and labeled
QED/EW.

µ µ

γ

Figure 1: Leading-order QCD contribution a(2)µ .

The QCD contribution to a(2)µ , denoted by the
shaded region, can be related to R(s), given in
equation 2.2, determined experimentally or calcu-
lated using lattice QCD.

where a(n)µ = αnA(n)
µ . The expansion in α is perturbative but the A(n)

µ must be calculated nonpertur-

batively. The largest source of uncertainty is due to a(2)µ , which we discuss next.

2.1 Experimental determination of a(2)µ

The leading-order correction a(2)µ , shown in figure 1, can be determined experimentally. It can
be written as an integral of R(s) and a known function K(s/m2

µ) as [3]

a(2)µ = α
2
∫

∞

4m2
π

ds
s

K(s/m2
µ)R(s) with R(s) =

σ(γ∗→ hadrons)
σ(γ∗→ e+e−)

. (2.2)

In practice, measurements of σ(γ∗→ hadrons) from many different experiments are combined to
form the integral above. The most recent compilation of measurements results in a(2)µ = 6.923(42) ·
10−8 [6], which is an improvement on the error given in table 1. This approach has been and will
continue to be for some time the most accurate means of providing the QCD input needed to form
the standard model prediction for aµ . This value is significantly more precise than current lattice
results, but we should bear in mind that this result requires a substantial experimental effort to
determine a quantity that should in principle be predicted from the theory itself. Reaching and
even exceeding the precision of the experimental determination of a(2)µ should be part of the long-
term efforts of the lattice community.

2.1.1 Estimates of the flavor dependence of a(2)µ

As we will see shortly, lattice calculations must include the four lightest quarks to reach the
precision on a(2)µ needed for the future muon g -2 experiments. However, the number of quark
flavors used in current lattice computations varies from n f = 2 to 3 and just recently 4 flavors.
Thus it is useful to have some guidance on the n f dependence of a(2)µ . Unfortunately, there is no

unique way to do this for a(2)µ , which is a problem for many other observables as well. The effects of
decoupling a quark flavor depend on the renormalization conditions used for the remaining degrees
of freedom. This ambiguity exists in perturbation theory and would also apply to any analysis of the
experimental results. The advantage of lattice calculations is that they can provide a well-defined
way to prescribe such a definition.
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Figure 2: Measured R(E). The R(s) with
√

s = E
from F. Jegerlehner [7] is shown.

n f a(2)µ,n f [Exp] a(2)µ,n f [Lat]
5 6.93(06) -
4 6.93(06) underway [8]
3 6.81(05) 6.41(46) [9], 6.18(64) [10]
2 5.67(05) 5.72(16) [1], 5.46(66) [10]

Table 2: Estimated n f dependence of a(2)µ (given
in units of 10−8) from experimental measurements
using equation 2.3 ("[Exp]") and current lattice cal-
culations ("[Lat]").

Keeping in mind these limitations, we proceed with a simple means of estimating the flavor
contributions from the experimental measurements. We start with the experimentally determined
R(s) [7] and rescale by the electric charges Q f of the relevant quark flavors f as follows

Rn f (s)≡ R(s)
∑

n f
f Q2

f

∑
n
f Q2

f
for 4m2

n ≤ s≤ 4m2
n+1 with a(2)µ,n f ≡ α

2
∫

∞

4m2
π

ds
s

K(s/m2
µ)Rn f (s) . (2.3)

The ∑
n
f accounts for the n degrees of freedom present in the experimental measurements between

the quark thresholds 4m2
n and 4m2

n+1 and the ∑
n f
f restores the desired n f flavors. The leading-order

perturbative contribution to R(s) scales this way, so this prescription is valid up to perturbative
corrections and away from the resonance regions. Near resonances, this amounts to a quark-hadron
duality argument. For example, the strange quark content of the prominent φ meson would not
follow such a scaling but the integrand K(s/m2

µ) is relatively smooth and effectively averages R(s)
across a window in s over which this scaling is expected to be more effective. In practice, the part
of this prescription that has the most impact on the resulting estimates of a(2)µ,n f is the use of quark
masses rather than a resonance mass to define the thresholds. And in fact, only the strange quark
threshold is particularly sensitive to this choice.

Using this simple prescription, the n f dependence of a(2)µ can be estimated. To do this, we
have used the R(s) compiled by F. Jegerlehner [7]. This is shown in figure 2. The results of
this procedure and a comparison with the current lattice calculations are given in table 2. This
suggests that the charm quark correction is roughly 1.2 ·10−9. The current experimental precision
is 6.3 · 10−10, which makes it clear that charm quark contributions are already necessary to reach
the precision of the BNL measurement, let alone the precision for the future g -2 experiments.

Alternatively, one could attempt to assign flavor weights to each of the final states in the total
cross section σ(γ∗→ hadrons) and form a(2)µ,n f . This approach is an alternative prescription to the
one given above and, in fact, differs from it [11, 12], illustrating the ambiguity in extracting the
n f = 2 piece. It turns out to lead to a larger n f = 2 contribution than given in recent n f = 2 lattice
calculations, but we want to emphasize that any such ambiguities are systematically eliminated as
the lattice calculations account for all the relevant quark flavors, which appears to be n f = 4.

2.2 Lattice calculation of a(2)µ

The standard method to calculate a(2)µ using lattice QCD was given by Blum in [13]. It requires
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Figure 3: Vector-meson coupling gV .
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Figure 4: Modified method a(2)
µ

.

calculating the vacuum-polarization function Π(Q2) and evaluating the integral

a(2)µ = α
2
∫

∞

0

dQ2

Q2 ω(Q2/m2
µ)ΠR(Q2) . (2.4)

The weight function ω accounts for the perturbative portion of the diagram in figure 1 and is known.
ΠR(Q2) is the once-subtracted vacuum-polarization function, ΠR(Q2) ≡ Π(Q2)−Π(0), where Π

is given by

(QµQν −Q2
δµν)Π(Q2)≡

∫
d4XeiQ·(X−Y )〈Jµ(X)Jν(Y )〉 ,

and is directly calculable in Euclidean space. This formulation can be related to the approach used
to experimentally determine a(2)µ by noting that R(s) is proportional to ImΠ(−s+ iε), which is
non-zero only on the branch cut starting at s = 4m2

π . A standard dispersion analysis then allows
one to relate equations 2.2 and 2.4.

2.2.1 Role of external leptonic scale in a(2)µ

Naively, the lattice calculation of a(2)µ should be relatively easy. The only non-trivial part of
the computation is the calculation of the Euclidean two-point correlation function 〈Jµ(X)Jν(Y )〉,
which can be accurately determined. Furthermore, the quantity a(2)µ is dimensionless, so it seems
reasonable to expect that it may exhibit a relatively mild dependence on the scales in the problem,
particularly the quark masses and lattice spacing. (Figure 3 shows an example of a typical dimen-
sionless quantity.) However, a(2)µ is dimensionless only at the expense of introducing an external
scale, the muon mass mµ , and this has several consequences.

First, mµ introduces a dependence on the lattice spacing a in an otherwise dimensionless ob-
servable. We can see this by writing the integration variable for a(2)µ in lattice units

a(2)µ = α
2
∫

∞

0

dQ̂2

Q̂2
ω(Q̂2/(amµ)

2)Πlat(Q̂2)

where Q̂ ≡ aQ is the momentum variable in lattice units and Πlat(Q̂2) ≡ ΠR(Q̂2/a2) is directly
calculated in lattice units. Thus the lattice spacing a is needed in physical units to form amµ . This
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suggests that a(2)µ may behave more like a dimensionful quantity. As a second consequence, the
introduction of mµ also allows for a stronger quark mass dependence than might otherwise be ex-
pected. The dominant contribution of the lightest vector-meson with mass mV and electromagnetic
coupling gV is proportional to g2

V m2
µ/m2

V . This is a model-dependent statement, but it is suggestive

that a(2)µ may in fact behave more like a mass dimension -2 observable. (A plot of mV corresponding
to the gV in figure 3 is given in [1].)

These two observations can be made precise by introducing an effective dimension

deff[X ]≡− a
X

∂X
∂a

∣∣∣∣
g
.

This quantity is defined so that it is sensitive to only QCD scales rather than the overall dimension.
To accomplish this, we write the observable X as a function of both the lattice spacing a and the
coupling g separately X = X(a,g). Of course, a = a(g) is eventually chosen to be some function of
the coupling, but treating a and g separately allows us to isolate the impact of the scale setting on
the quantity X . Furthermore, deff is defined so that it reproduces the usual definition of dimension
for a simple QCD observable but it differs for composite observables.

Several examples may help illustrate deff. First consider some observable M that is a standard
QCD quantity of mass dimension n. This quantity would satisfy M(a,g) = a−nM̂(g), where M̂(g)
is what is calculated on the lattice and the factor of a−n is eventually put in by hand. Then for such
an M we have

deff[M] =− a
a−nM̂(g)

∂

∂a

(
a−nM̂(g)

)
= n .

Thus the dimension of quantities that we normally calculate is unaltered. However, for a composite
object the answer can differ. For example,

deff
[
g2

V m2
µ/m2

V
]
= deff

[
ĝ2

V a2m2
µ/m̂2

V
]
=−2

where g2
V m2

µ/m2
V is the leading piece of the vector-meson contribution to aµ mentioned earlier.

Thus deff captures the dimensionality of the QCD scales in this rather simple composite expression.
We can now apply the definition of deff to a(2)µ and we find

deff[a
(2)
µ ] =−2

(∫
∞

0

dQ2

Q2 ω(Q2/m2
µ)Q

2 dΠR

dQ2

)(∫
∞

0

dQ2

Q2 ω(Q2/m2
µ)ΠR(Q2)

)−1

.

This quantity has a continuum limit. It is rather easy to show that deff[a
(2)
µ ]< 0, making it clear that

a(2)µ acts like an observable with a negative mass dimension. Additionally, for mµ → 0, we have
deff →−2, and for mµ → ∞, we can show that deff → 0. For an intermediate mass, this quantity
must be calculated nonperturbatively. For the muon, we find

deff[a
(2)
µ ] =−1.887(5)

which clearly indicates that a(2)µ behaves much more like a mass dimension -2 quantity than a
dimensionless observable.

6
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2.3 Modified lattice method for a(2)µ

Having diagnosed the difficulty in a(2)µ , first with dimensional analysis and then a model ar-
gument, and having provided a clean definition of the problem using deff, we can now attempt to
remedy it. In the end, we will define a modified quantity a(2)

µ
that has the same physical limit as

a(2)µ yet satisfies deff[a
(2)
µ
] = 0. Since the physical values of both observables are the same, we can

safely use either quantity to perform the computation. Furthermore, our observation that deff = 0
will provide a theoretical explanation for why a(2)

µ
should lend itself to an easier calculation.

Starting with the observation that deff[a
(2)
µ ] 6= 0, we sought a minimal way to modify a(2)µ to

eliminate this unexpected dependence on the lattice spacing. This is caused by the fact that mµ is
an external scale and not capable of absorbing the dependence on a. The solution we came upon
was to insert the factor H2

phys/H2 as follows

a(2)
µ

= α
2
∫

∞

0

dQ2

Q2 ω

(
Q2

H2 ·
H2

phys

m2
µ

)
ΠR(Q2) = α

2
∫

∞

0

dQ̂2

Q̂2
ω

(
Q̂2

Ĥ2
·

H2
phys

m2
µ

)
Πlat(Q̂2) , (2.5)

where H is some hadronic scale and Hphys is its physical limit value in physical units. Additionally,
the value of H is understood as being calculated at the same mPS as a(2)

µ
. Each choice of H gives

rise to a distinct new observable a(2)
µ

. We will shortly pick a favored H, so the dependence on H

in defining a(2)
µ

is suppressed. By construction, this quantity has the same physical limit as the
standard definition and eliminates the unwanted dependence on the lattice spacing,

lim
mPS→mπ

a(2)
µ

= a(2)µ and deff[a
(2)
µ
] = 0 .

This modification completely eliminates the unwanted a dependence, but it does not automatically
weaken the quark mass dependence. We know that the vector-mesons make a dominant contribu-
tion to a(2)µ of the form g2

V m2
µ/m2

V and that gV , shown in figure 3, is only weakly mPS dependent.
This suggests choosing H = mV . Other choices have been examined in [1] but we will use H = mV

exclusively in these proceedings when discussing the modified approach.
The results for a(2)

µ
are given in figure 4. As a(2)

µ
is now a proper dimensionless observable

composed of only QCD scales, it behaves like any other dimensionless quantity, as we can check
by comparing with the gV in figure 3. Additionally, the choice H = mV absorbs much of the mPS

dependence that has troubled previous calculations using the standard method. All indications are
that the systematic errors are relatively mild. Additionally, we have checked that disconnected
diagrams do not rise above the statistical errors shown in figure 4. The extrapolated value is given
in table 2 and is consistent with the estimated n f = 2 piece of the experimental determination. More
importantly, it is encouraging that the resulting error on the physical limit value of a(2)µ is already
within a factor of 3−4 of the experimental determination using equation 2.3.

2.4 Comparison of current lattice calculations of a(2)µ

Several groups have performed calculations of a(2)µ with both n f = 2 [1, 10] and n f = 3 [14, 9],
and a first n f = 4 calculation is underway [8]. To compare results, we focus on the standard method
for this section. First, we can examine the lattice calculations for n f = 2, which are shown in fig-
ure 5. There we find agreement between both computations, including their extrapolated values,
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Figure 5: Two-flavor lattice calculations of a(2)µ .
The calculations are from [1] ("Twisted") and
[10] ("Imp. Clover").
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Figure 6: Three-flavor lattice calculations of
a(2)µ . The results are from [14] ("Asqtad"), [9]
("DWF") and [10] ("Imp. Clover").

which are given in table 2. These results were calculated using different actions, at least two lattice
spacings, multiple physical volumes, a broad range of pion masses, and different treatments of the
low Q2 extrapolations of Π(Q2). The level of agreement is rather compelling for these two calcu-
lations. Additionally, it appears that the calculation of [10] shows a rapid rise as mPS is lowered,
which is consistent with the model-dependent expectations from the vector-meson contribution
discussed previously.

We now turn our attention to the n f = 3 calculations shown in figure 6. The situation here
appears to be less compelling than for n f = 2, but we must take some care before reaching such
a conclusion. A detailed comparison requires a bit more space than allowed in these proceedings,
so we will limit ourselves to commenting on one conceptual issue that is important to understand
before making any definitive statements. When comparing the n f = 3 results, we must consider
how the strange quark mass is determined. Unless the chosen renormalization conditions match,
there is no reason why these curves would generally agree. The only expectation is that the values
extrapolated to mPS = mπ must agree when all other uncertainties have also been controlled for.
This seems to be the case in figure 6. Additionally, the extrapolated values given in [9] and [10]
(also given in table 2) do agree. (The work of [14] did not cite a final result but it overlaps with
the calculation of [9] for all three values of mPS used in [14].) Further understanding is needed for
n f = 3, but the results of the lattice calculations may be more encouraging than is reflected in a
simple head-to-head comparison as done in figure 6.

3. Leading-order QCD correction to the electron magnetic moment

We now turn our discussion to a sequence of examples illustrating the application of the mod-
ified method of [1]. The first two examples are simple extensions to the other two leptons but
nonetheless provide nontrivial tests of the new method. Besides, these are first lattice calculations
of both quantities. In [1], the leading-order QCD contributions to the electron and tau magnetic mo-
ments were also calculated, a(2)e and a(2)τ . The electron magnetic moment is measured to a precision
of 0.28 parts-per-trillion [15]. The lightness of the electron makes ae significantly less dependent
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Figure 7: Modified method a(2)e .
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Figure 8: Modified method ∆E.

on QCD corrections but the enhanced precision of the experimental measurements overcomes the
reduced sensitivity. The current measurement of ae is so precise that it is in fact used to determine
α . The standard model is then tested by comparing this value to other determinations of α . These
comparisons have reached the precision that QCD effects of a(2)e can not be ignored. However, the
precision on ae is not yet high enough to probe the error on a(2)e , so there is no pressing experimental
need for higher precision a(2)e determinations.

For our purposes, a(2)e provides a test of the modified method that is sensitive to only the
extreme lowest Q2 scales. To a high accuracy, a(2)e can be approximated as

a(2)e =
4
3

α
2m2

e
dΠR(Q2)

dQ2

∣∣∣∣
Q2=0

+O(me/Λ)4 .

This approximation is not used in [1], but we mention it in order to illustrate that a(2)e probes
essentially just the derivative of Π(Q2) at Q2 = 0. It also illustrates in a simple way again the
idea that a(2)e may behave differently from a typical dimensionless observable. In the case of a(2)e ,
the approximation above strongly suggests that it will behave very much like a mass dimension -2
observable. This can be made precise by noting that

deff[a
(2)
e ] =−1.999984(1) .

The results for a(2)e from [1] are shown in figure 7 using the modified method. The behavior of a(2)e

is very similar to a(2)µ and agrees with the estimated n f = 2 piece of the experimental measurement.
Additionally, the leading QCD vacuum-polarization correction to the 2P−2S Lamb shift of

muonic-hydrogen is also proportional to the slope of Π(Q2) at Q2 = 0 and hence closely related to
a(2)e . This correction is given in [16], with mr the reduced mass of the µ−p system, as

∆E = 2πα
5m3

r
dΠR

dQ2

∣∣∣∣
Q2=0

and ∆E = 2πα
5m3

r

dΠR(Q2/H2
phys ·H2)

dQ2

∣∣∣∣∣
Q2=0

.

The second form is the modified approach for ∆E and results from a consistent treatment of external
scales as discussed thoroughly in section 5. The results for ∆E are shown in figure 8.
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Figure 10: Modified method ∆α
(1)(M2

0).

4. Leading-order QCD correction to the tau magnetic moment

The magnetic moment of the tau is substantially more sensitive to potential new physics than
that of the muon, but it has not been experimentally measured. There are experimental bounds on
aτ [17], but more interesting to us is that a(2)τ can be determined by the same analysis used for a(2)µ

and a(2)e . Additionally, due to the heaviness of the tau, it is sensitive to a different range of QCD
scales. In fact,

deff[a
(2)
τ ] =−0.936(13)

indicates that it behaves quite a bit different than a(2)µ and a(2)e and more like a mass dimension

-1 observable. In fact, applying the standard method to a(2)τ leads to a reasonable calculation.
However, the arguments for the modified method still apply here and it is yet another test of the
approach. The results for a(2)

τ
are shown in figure 9. Again, the resulting observable has a mild mPS

dependence. Furthermore, it agrees with the estimated n f = 2 piece of the dispersive result, deter-
mined from equation 2.3, providing more confidence in both the modified method and the simple
prescription for analyzing the n f dependence of R(s). As figure 9 shows, the lattice determination
of a(2)τ is already more accurate than its experimental determination, suggesting that future mea-
surements of aτ can in fact rely on a fully nonperturbative determination of a(2)τ without sacrificing
any precision once n f = 4 lattice calculations have been completed.

5. Leading-order QCD contribution to the running of the QED coupling

In order to further demonstrate and understand the modified method of [1], we have applied
the same idea to the determination of the leading-order QCD corrections to the running of α . This
is the first lattice calculation of this quantity and all results discussed in these proceedings are
preliminary. The running of α is normally treated by introducing an effective coupling given by
summing all one-particle irreducible bubble insertions in the photon propagator. This results in

α(Q2) =
α

1−∆α(Q2)
.
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The QCD contribution ∆αQCD is again expanded in α . The leading-order correction is

∆α
(1)(Q2) = 4πα ΠR(Q2) .

The value of α(Q2 = 0) is just the usual coupling α , which is known to a relative precision of
1 ·10−9. However, after evolving α to a high scale, say the Z-boson pole at Q2 = M2

Z , the relative
precision on α(M2

Z) drops to 1 ·10−4 [6], making α(M2
Z) one of the more poorly known fundamen-

tal parameters in high energy predictions. Similar to aµ , the dominant uncertainty in this evolution
is due to hadronic corrections, which is then passed into every high energy process through the use
of the running coupling α(M2

Z). This has larger impact than one might have naively expected. As
one example, a recent global analysis by the Gfitter collaboration determined the Higgs mass to
be mH = 44+62

−43 GeV, if the experimental determination of ∆α(M2
Z) was not included in the fit and

found mH = 96+31
−24 GeV if it was [18].

The treatment of the external scales for a(2)l introduced earlier uniquely fixes the treatment of
the now external scale Q2 in ∆α(Q2). To see this, we can simply rewrite equation 2.5 as

a(2)
l

= α
2
∫

∞

0

dQ2

Q2 ω
(
Q2/m2

l
)

ΠR
(
Q2/H2

phys ·H2) .
This suggests rather clearly that we should consider the following modified definition of ∆α(1)

∆α
(1)(Q2)≡ 4πα ΠR(Q2/H2

phys ·H2) .

Just as for a(2)
l

, this new quantity explicitly has the correct physical limit but also satisfies deff = 0.
We can examine the consequences of this definition by first focusing on Q2 = M2

0 with M0 =

2.5 GeV, which is a common matching scale for phenomenological work. The lattice calculation
is shown in figure 10. We see that, just as for each of the a(2)l calculations, the modified def-
inition results in a rather mild looking extrapolation to the physical point, giving ∆α(1)(M2

0) =

5.72(12) · 10−3. We can also apply the same treatment of the n f dependence of the experimen-
tally determined R(s) to ∆α(1) resulting in ∆α(1)(M2

0) = 5.60(06) · 10−3. The preliminary lattice
computation results in an uncertainty that is now only twice the error of the experimentally deter-
mined quantity, suggesting that lattice calculations could be a competitive, if not superior, way to
determine ∆α(Q2) at least for low scales.

Now, we can repeat the analysis for all Q2 and determine the QCD induced running of α(Q2).
This is shown in figure 11. By comparing results with different lattice spacings, we notice signifi-
cant lattice artifacts only for Q2 & 7 GeV2. This appears to be just a mild obstacle to an accurate
determination of ∆α(Q2) in the relevant low Q2 regime. The scale of Q2 = M2

0 was chosen be-
cause perturbation theory becomes reliable for yet larger Q2. To run α to higher scales, we have
determined αs by matching Π(Q2) to the perturbative expectations for the Q2 regions that can be
reached in lattice calculations and then determined ∆α(1)(Q2) at larger scales through

∆α
(1)(M2

Z) = ∆α
(1)(M2

0)+(∆α
(1)(M2

Z)−∆α
(1)(M2

0)) ,

where the perturbative expression for ∆α(1)(M2
Z)−∆α(1)(M2

0) is available at 5 loops [19].
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Figure 12: Modified method D(Q2).

We note that to determine αs, it appears to be better to calculate the Adler function D(Q2) =

dΠ(Q2)/d ln(Q2). To consistently apply our treatment of the external scale Q, we define a modified
Adler function

D(Q2) = D(Q2/H2
phys ·H2) .

The results of a preliminary calculation with the modified technique are shown in figure 12.

6. Next-to-leading-order QCD contribution to the muon magnetic moment

The precision of the current BNL measurement of aµ already requires that the next-to-leading-
order QCD correction a(3)µ be accounted for. Most of the diagrams involve insertions of the vacuum-
polarization correction into lower order QED diagrams, but a new QCD contribution, called light-
by-light, also occurs at this order.

6.1 Vacuum-polarization corrections

The vacuum-polarization correction can be inserted once or twice into any photon line of a
two-loop or one-loop QED diagram, respectively. This results in 16 diagrams that involve one oc-
currence of Π(Q2) and one diagram with two insertions of Π(Q2). Example diagrams are shown
in figure 13. Expressions in various forms are available for these corrections when expressed as
integrals over R. The analytic continuation to Euclidean space is complicated for some of these
contributions, but it appears that all vacuum-polarization contributions to a(3)µ can be calculated in
Euclidean space. A preliminary calculation using the modified approach1, shown in figure 14, gives
a(3,vp)

µ =−7.99(20) ·10−10. The uncertainty includes only statistical errors but the systematic un-
certainties appear to be small. For comparison, the n f = 2 piece of the experimental measurement
is a(3,vp)

µ = −7.94(16) · 10−10. Further study is underway, but the initial results for the vacuum-

polarization contribution to a(3)µ seem to agree with the expectations from the experimental mea-
surements and have a nearly comparable uncertainty. Most importantly, the precision of the lattice
result is better than the accuracy expected for the future muon g -2 measurements, so it seems that

1At the conference, only a partial accounting of the diagrams was given and resulted in a different value. The result
reported here accounts for all vacuum-polarization contributions to a(3)µ .
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.

lattice QCD should be quite capable of determining the higher-order vacuum-polarization contri-
butions at the required precision.

6.2 Light-by-light corrections

In contrast to the vacuum-polarization corrections, the light-by-light contributions to a(3)µ rep-
resent a real challenge. There are ongoing lattice studies by several groups [20, 21, 22], each using
different methods but still all exploratory. The uncertainty on the light-by-light correction a(3,lbl)

µ is

nearly as large as that of a(2)µ and there are open questions regarding the methods currently used for

its determination, so a nonperturbative calculation of a(3,lbl)
µ is highly desirable. However, a lattice

calculation of one piece of the higher-order contribution is less satisfying than a complete lattice
calculation of both the leading-order and next-to-leading-order corrections. It now appears that the
vacuum-polarization pieces should be calculable, so the light-by-light contribution is the only re-
maining piece needed for a completely nonperturbative determination of aQCD

µ accurate to O(α3).
We can only hope that this will encourage an even greater effort within the lattice community to
tackle the desperately needed light-by-light contribution.

7. Conclusions

We have discussed several examples of important measurements that receive sizable hadronic
corrections. The muon g -2, which hints at beyond-the-standard-model physics, is the most press-
ing observable, but ∆α(Q2) may in fact have a much broader impact on precision standard model
predictions. Using a modified lattice approach, the leading QCD corrections to both of these ob-
servables appear to be reliably calculable. To further explore the new method, we have also exam-
ined the leading corrections to the electron and tau leptons and the Lamb shift in muonic-hydrogen.
We have calculated the Adler function, which can be matched to perturbation theory to determine
the strong coupling. Lastly, we have worked out methods to examine all the vacuum-polarization
corrections at the next-to-leading order. In several cases, the currently reached precisions on these
quantities are approaching that of the corresponding experimental determinations. This indicates
that fully nonperturbative determinations of QCD corrections to electroweak observables may be
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feasible at the precisions needed by future experimental measurements that aim to discover or con-
strain physics beyond the standard model.
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