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A method for resummation of perturbative
expansions based on the stochastic solution of
Schwinger-Dyson equations
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We describe a numerical method for resummation of perturbative expansions in quantum field
theories, which is based on the stochastic solution of Schwinger-Dyson equations. Our algorithm
randomly generates open Feynman diagrams with probability proportional to their weight times
some factor which compensates the combinatorial growth of their number. Perturbative series can
be then easily re-summed by a Pade-Borel-Leroy procedure. As a simple test of our method, we
apply it to a theory of one-component scalar field with quartic interaction. Resummation of per-
turbative expansion of renormalized coupling constant confirms that this theory is trivial in four
and five space-time dimensions, and that the trivial fixed point is unstable in three dimensions.
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Resummation of perturbative expansions based on Schwinger-Dyson equations Pavel Buividovich

Monte-Carlo integration over all possible field configurations is one of the most universal and
popular numerical methods for simulations of quantum field theories. However, such method might
experience significant slow-down when a typical correlation length of quantum fields becomes very
large. As well, it cannot be applied if the path integral weight is non-positive, which is often the
case for fermionic field theories.

An alternative to the standard Monte-Carlo is the so-called Diagrammatic Monte-Carlo, which
randomly samples weak- or strong-coupling expansion diagrams rather than field configurations.
In many cases, Diagrammatic Monte-Carlo significantly reduces critical slowing-down and the
severity of the sign problem [1, 2]. For this reason, it is also believed that such diagrammatic
methods might help to solve a famous problem of simulating QCD at finite chemical potential.

A serious obstacle for Diagrammatic Monte-Carlo is the factorial divergence of the weak-
coupling perturbative expansions. Namely, the number of Feynman diagrams grows factorially
with the diagram order, and the resulting series cannot be directly summed. For this reason, Dia-
grammatic Monte-Carlo was applied mostly to strong-coupling expansions, which can be analyti-
cally continued to the weak-coupling regime in a finite volume [2]. Unfortunately, strong-coupling
expansions are often quite complicated, and it is not always clear how to fit them into Diagrammatic
Monte-Carlo. For instance, it is not known how to sample strong-coupling expansion diagrams in
SU (N) gauge theories or SU (N) sigma-models. Moreover, for such theories the continuum limit
is approached in the weak-coupling regime, and one can expect numerical methods based on the
weak-coupling expansion to be more efficient. A method for approximation of the sum of diver-
gent series by a sequence of functions with convergent expansions has been proposed recently in
[3], however, so far it has been applied to zero-dimensional path integrals only. It is also not clear
how to generalize the approach of [3] to lattice field theories with compact variables, such as lat-
tice QCD. Thus, up to now a systematic method which would be able to perform a Monte-Carlo
(re)summation of conventional Feynman diagrams is not known.

In this Letter we describe a simulation strategy which can be applied to theories with asymp-
totic perturbative expansions and which is formulated without any explicit reference to diagram
weights. Much like the “worm” algorithm [1], our method generates open Feynman diagrams by
some random process. This process is constructed in such a way that its stationary probability
distribution satisfies the perturbatively expanded Schwinger-Dyson equations of the theory. Since
Schwinger-Dyson equations can be easily derived for any quantum field theory, we believe that
our method has a large potential for generalizations. In [4] we have already applied a similar idea
to quantum field theories in the large-N limit, where saddle points of path integrals correspond to
sums over planar diagrams. Here we extend our approach beyond the planar approximation.

In order to illustrate our method, we consider Schwinger-Dyson equations for the theory of a
single-component scalar field with quartic interaction. The action of the theory is:

S =
∫

dDx
(
1/2∂µφ∂µφ +m2

0/2φ
2 +λ0/4φ

4) . (1)

We now define the disconnected field correlators in momentum space as G(p1, . . . , pn) =

〈φ (p1) . . .φ (pn)〉, φ (p) =
∫

dDxeipx φ (x). We also omit the trivial factor (2π)D
δ

(
n
∑

A=1
pA

)
from

all the correlators and assume that the momenta entering them are conserved.
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Schwinger-Dyson equations for the theory (1), obtained by varying the path integral over
φ (p1), are:

(
m2 + p2

1
)

G(p1, p2, . . . , pn) =
n

∑
A=2

(2π)D
δ (p1 + pA)G(p2, . . . , pA−1, pA+1, . . . , pn)−

− λ0

(2π)2D

∫
dDq1 dDq2 dDq3 δ (p1−q1−q2−q3) G(q1,q2,q3, p2, . . . , pn) , (2)

where the arguments of the correlator in the first summand on the r.h.s. of (2) are all the momenta
except p1 and pA. We thus arrive at a complete system of functional linear equations for an infinite
set of unknown functions G(p1, . . . , pn).

Infinite systems of equations similar to (2) can be efficiently solved by stochastic methods (see
e.g. [5] for a review). Following our earlier work [4], we would like to interpret the equations (2)
as equations for the stationary probability distribution of some Markov process. Such equations
have the general form ω (A) = ∑

B
P(B→ A)ω (B), where ω (A) is the stationary probability to

encounter the state A and P(B→ A) is the probability of transition from B to A. The space of states
of the required process should contain the sequences of momenta {p1, . . . , pn}, and the correlator
G(p1, . . . , pn) should be proportional to the probability of encountering the sequence {p1, . . . , pn}.
Since the random process would not be able to reach the configurations of momenta {p1, . . . , pn}
with sufficiently small G(p1, . . . , pn) in a finite time, an infinite hierarchy of equations (2) would
be automatically truncated.

It turns out, however, that a direct stochastic interpretation of equations (2) is impossible. The
reason is that the probability to go from the state with n momenta to the state with n+2 momenta,
which is proportional to the number of summands in the first term on the r.h.s. of (2), for sufficiently
large n always exceeds unity. This is, in fact, already the manifestation of the factorial divergence of
the perturbative series. Note the difference with large-N quantum field theories, where perturbative
series converge at sufficiently small coupling and a direct stochastic interpretation of Schwinger-
Dyson equations is possible [4].

Here we propose to cast the equations (2) into stochastic form by formally expanding the field
correlators in powers of the bare coupling constant λ0:

G(p1, . . . , pn) =
+∞

∑
m=0

cn,m (−λ0)
m Gm (p1, . . . , pn) , (3)

with some coefficients cn,m. Schwinger-Dyson equations (2) then relate expansion coefficients
with different m:

Gm (p1, . . . , pn) =
n

∑
A=2

cn−2,m (2π)D
δ (p1 + pA)

cn,m
(
m2

0 + p2
1

) Gm (p2, . . . , pA−1, pA+1, . . . , pn)+

+
cn+2,m−1

cn,m (2π)2D (m2
0 + p2

1

) ∫ dDq1 dDq2 dDq3 δ (p1−q1−q2−q3) Gm−1 (q1,q2,q3, p2, . . . , pn) , (4)

where we assume that Gm with no arguments is proportional to δm,0 and cn,m = 0 for m < 0.
In order to compensate for the growth of the number of summands in the first term on the r.h.s.

of (4), the coefficients cn,m should grow not slower than (n/2)! at large n. The contribution of the
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second term remains finite for any n and m if cn,m grow as (n/2+m)! at large n, m. After some
optimization we arrive at the following choice of the coefficients cn,m:

cn,m = Γ(n/2+m+1/2) x−(n−2) y−m, (5)

where x2 = 1
4(2π)D

Σ0
, y = (2π)D m2

0
8Σ0

, Σ0 =
∫
|q|<Λ

dDq 1
q2+m2

0
and Λ is the ultraviolet cutoff.

With cn,m given by (5), we can interpret equations (4) as equations for the stationary probability
distribution of a Markov process with states specified by sequences of momenta {p1, . . . , pn} and
nonnegative integer numbers m. It is also convenient to extend this space of states by adding a real
number χ ∈ [0,1]. We describe this random process as

Algorithm 1. At each iteration, do one of the following:

Add momenta: With probability pA = n+1
2n+4m+2 insert a random momentum p at the beginning of

the sequence {p1, . . . , pn}, and −p - between the A’th and A+1’th elements. A is random in
the range 0 . . .n. The probability distribution of p is proportional to 1

p2+m2
0
, with |p|< Λ. m

and χ are not changed.

Create vertex: With probability pV = 1/2 remove the three first momenta from the sequence and
replace them by their sum p = p1 + p2 + p3. Multiply χ by m2

0/
(
m2

0 + p2
)

and increase m by
one.

Restart: Otherwise set χ = 1 and m = 0 and start with an empty sequence.

The solution of (4) is then given by Gm (p1, . . . , pn) = N
∫

dχ χ ω (χ;m; p1, . . . , pn), where
ω (χ;m; p1, . . . , pn) is the probability to encounter the corresponding state of the random process
and N is some normalization factor which can be found by comparing the probability of occurence
of an empty sequence with unity. In practice, in order to measure Gm (p1, . . . , pn), one should
weight each configuration of momenta by the factor χ when performing statistical averaging. C
code of Algorithm 1 can be found at [6].

Feynman diagrams of the theory can be easily reconstructed from the history of our random
process, hence the names of the actions in Algorithm 1. In particular, one can use only connected
diagrams for measurements, which significantly reduces numerical noise. Factorial growth of the
number of diagrams is compensated by the growth of coefficients cn,m in (3). The weight of each
diagram is proportional to the kinematical factor∫

∏
i

dDqi

q2
i +m2

0
∏

j

1
Q2

j +m2
0
, (6)

where qi are independent momenta circulating in loops and Q j can be expressed as some linear
combinations of qi and the momenta of the external legs. Our algorithm simply performs Monte-
Carlo integration over the independent momenta qi, which are randomly distributed with probabil-
ity ∼

(
q2

i +m2
0
)−1 within the D-dimensional spheres of radius Λ. The factor χ then contains the

product of propagators involving Q j.
Note also that transition probabilities for the Markov process specified by Algorithm 1 and

hence its autocorrelation time (which does not exceed several iterations) do not depend on the

4



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
0
2
8

Resummation of perturbative expansions based on Schwinger-Dyson equations Pavel Buividovich

 1e-009

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25

P
ro

ba
bi

lit
y

m

G2; m(p), all momenta
G2; m(p), p < m0

G4; m(p), all momenta
G4; m(p), p < 2 m0

Figure 1: Probabilities of encountering connected diagrams with m vertices and 2 and 4 external legs for
Algorithm 1 in D = 4, for any momenta on the external legs and for all momenta below some infrared cutoff.
Solid lines illustrate the expected asymptotic behavior ω (χ;m; p1, . . . , pm)∼ pm

V at large m.

physical parameters of the theory (1). Therefore Algorithm 1 does not slow down near the contin-
uum limit in the sense of the standard Monte-Carlo. Analogue of this slowing down in our case is
the growth of the number of iterations which are required to obtain sufficient statistics in the low-
momentum region. If ΛIR is the infrared cutoff, the volume of this region and hence the probability
for all momenta to be within it decrease as Λ

(n−1)D
IR as ΛIR→ 0. Such kinematical suppression can

be clearly seen on Fig. 1.

As a test of our algorithm, we have studied the renormalization-group trajectories for the
theory (1) in different space-time dimensions, namely, the dependence of the renormalized cou-
pling constant on the renormalized mass at fixed bare coupling constant λ0. Renormalized mass
mR is extracted from the two-point correlator at small momenta: G(p) = ZR

m2
R+p2+O(p2) , where

ZR is the wave function renormalization constant. In practice we have considered the function
Γ2 (p) =

(
m2

R + p2
)

G(p), and tuned the value of mR so that Γ2 (p) has minimal deviation from
constant value ZR for p < mR. Renormalized coupling λR is related to the connected truncated four-
point correlator Γ(p1, p2, p3, p4) at zero external momenta: λR =−1/6Z2

R Γ(0,0,0,0). We assess
the zero-momentum limit of field correlators (or their expansion coefficients (3)) by summing up
sequences of momenta generated by Algorithm 1 with an additional weight factor proportional

to Λ
−(n−1)D
IR exp

(
−

n
∑

A=1

p2
A

2Λ2
IR

)
. The result is then normalized so as to recover Gm (p1, . . . , pn) at

p1, . . . , pn = 0 in the limit ΛIR→ 0.

Once the expansion coefficients Gm (p1, . . . , pn) and the factors cn,m are known, the series
(3) can be resummed using the Pade-Borel-Leroy procedure. Namely, in order to recover the
correlators G(p1, . . . , pn), one should integrate their Borel-Leroy transform G(z; p1, . . . , pn) =
+∞

∑
m=0

(−z)m Gm (p1, . . . , pn) over z with the weight proportional to e−
yz
λ0 z

n−1
2 . Such integration repro-

duces the factors (5) in (3). Given only a finite number of known coefficients Gm (p1, . . . , pn), one
approximates G(z; p1, . . . , pn) with a rational function of z. This is equivalent to approximating the
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Figure 2: Reweighted expansion coefficients (3) for the regularized zero-momentum limit of two- and four-
point connected truncated correlators Γ2 (ΛIR = m0) and Γ4 (ΛIR = 2m0) for D = 4. Solid lines are the fits
of the data with the sum of several exponents (three for the two-point, one for the four-point correlators).
Only coefficients with relative error below 10% were used for fitting and are shown on the plot.
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Figure 3: Renormalized coupling constant as a function of renormalized mass for fixed bare coupling λ0.
For D = 4 and D = 5 we take λ0 = 0.1, 0.2, 0.5, 1.0 and for D = 3, λ0 = 0.1,0.2. For D = 4, solid lines
correspond to the result of integration of one-loop massive β -function. For D = 5, straight solid lines are the
linear fits of the data at small masses. For D = 3 and D = 5, interpolating splines are also shown to guide
the eye.

coefficients Gm (p1, . . . , pn) with a sum of exponential functions in m: Gm (p1, . . . , pn) = ∑
k

ak bm
k ,

where each summand corresponds to a simple pole of G(z; p1, . . . , pn). Integration over z can be
then performed analytically. It turned out that standard Pade approximants constructed using all
data points are very unstable due to statistical errors, and contain multiple spurious poles. In order
to obtain stable approximants, we find the optimal number and values of ak and bk by fitting the
numerical data. Such fits are illustrated on Fig. 2. A special fitting procedure based on the singu-
lar value decomposition of so-called Hankel matrices [7] was used. Our results are based on 109
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iterations of Algorithm 1 (taking several hours on a 2 GHz CPU) for each m0 and D.
The renormalized coupling constant λR obtained with such a resummation procedure is plotted

on Fig. 3 as a function of renormalized mass mR in lattice units. Renormalization-group arguments
suggest that λR should go to zero in the continuum limit mR→ 0 for D≥ 4, and increase for D < 4.
Our results clearly agree with this “triviality” conjecture [2, 8]. For D = 4, the behavior of λR is
consistent within error range with the logarithmic scaling which follows from the integration of the
one-loop β -function of the theory. As could be expected from dimensional arguments, for D = 5
the dependence of λR on mR is almost linear at small mR. For D = 3 λR quickly grows as mR

decreases. On the other hand, at large mR the renormalized coupling tends to its bare value λ0 for
all D.

We conclude that stochastic perturbative solution of Schwinger-Dyson equations, combined
with a specially adopted Pade-Borel-Leroy resummation procedure, can be successfully used for
numerical simulation of quantum field theories. It can be a viable alternative to Diagrammatic
Monte-Carlo when weak-coupling perturbative expansions are only asymptotic.
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