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The Overlap operator fulfills the Ginsparg-Wilson relation exactly and therefore represents an op-
timal discretization of the QCD Dirac operator with respect to chiral symmetry. When computing
propagators or in HMC simulations, where one has to invert the overlap operator using some iter-
ative solver, one has to approxomate the action of the sign function of the (symmetrized) Wilson
fermion matrix Q on a vector b in each iteration. This is usually done iteratively using a ‘primary’
Lanczos iteration. In this process, it is very important to have good stopping criteria which allow
to reliably assess the quality of the approximation to the action of the sign function computed so
far. In this work we show how to cheaply recover a secondary Lanczos process, starting at an ar-
bitrary Lanczos vector of the primary process and how to use this secondary process to efficiently
obtain computable error estimates and error bounds for the Lanczos approximations to sign(Q)b,
where the sign function is approximated by the Zolotarev rational approximation.
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1. Introduction

Overlap fermions as a lattice formulation of QCD respecting chiral symmetry have been pro-
posed in [7] and been investigated since by many authors. The overlap operator still represents
the discrete Dirac operator which most neatly deals with chiral symmetry, fulfilling the Ginsparg-
Wilson relation on the lattice exactly. If DW describes the hopping part of the standard Wilson
fermion matrix and κc its critical hopping parameter, the overlap operator is given as

DO = I +ργ5sign(Q) with Q = γ5(I−
4κc

3
DW ).

Herein, ρ is a mass parameter which is close to 1.
A direct computation of sign(Q) is not feasible, since Q is large and sparse, whereas sign(Q)

would be full. Therefore, numerical algorithms which invert systems with the matrix DO have
to follow an inner-outer paradigm: One performs an outer Krylov subspace method where each
iteration requires the computation of a matrix-vector product involving sign(Q). Each such product
is computed through another, inner iteration using matrix-vector multiplications with Q. In this
context, it is very important to be able to assess the accuracy of the computed approximation to
sign(Q)b from the inner method, since one can steer the outer method so as to require less and less
accurate computations of sign(Q)b, resulting in substantial savings in computational work, see [1].

In this work we precisely consider the task of obtaining reliable error estimates and bounds
when computing approximations for sign(Q)b. Most preferably, we would like to have a precise
upper bound, so that a stopping criterion based on that upper bound will guarantee that the exact
error is below this bound. Actually, we will consider the case where the sign function sign(t) is
approximated by a rational function g(t), the Zolotarev approximation. This approach has estab-
lished itself as the method of choice, since the multishift cg method allows for an efficient update
of the iterates, involving only short recurrencies and thus few memory [9].

Usually, one fixes the rational Zolotarev approximation g(Q)b such that the error w.r.t. the
sign function is less than ε1 on the spectrum of Q. An error bound ε2 for the approximation of
g(Q)b then results in an overall error bound ε1 + ε2 w.r.t. sign(Q)b.

2. Lanczos process and Lanczos approximations

Assuming that v1 ∈Cn is normalized to ‖v1‖2 = 1, the Lanczos process computes orthonormal
vectors v1,v2, . . . such that v1, . . . ,vm form an orthonormal basis of the nested sequence of Krylov
subspaces Km(Q,v1), m = 1,2, . . .. It is given here as Algorithm 2.1.

The Lanczos process can be summarized via the Lanczos relation

AVm =Vm+1Tm+1,m =VmTm +βm · e∗mvm+1, (2.1)

where Vm = [v1| . . . |vm] ∈ Cn×m is the matrix containing the Lanczos vectors, em = (0, . . . ,0,1)∗ ∈
Cm and

Tm+1,m =

[
Tm

βm · e∗m

]
∈ R(m+1)×m with Tm = tridag(β1:m−1,α1:m,β1:m−1) symmetric, tridiagonal.
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Algorithm 2.1: Lanczos process with matrix A and starting vector v1

choose v1 such that ‖v1‖= 1
let β0 := 0, v0 := 0
for j = 1, . . . ,m do

w j = Av j−β j−1v j−1

α j = v∗jw j

w j = w j−α jv j

β j = ‖w j‖2

if β j = 0 then stop
v j+1 = (1/β j) ·w j

Let g(t) =∑
p
i=1

ωi
t−σi

be the Zolotarev approximation to t−1/2. We get the m-th Lanczos approx-
imation to g(Q2)(Qb), which in turn approximates sign(Q)b, by running a multishift cg method,
based on the Lanczos process, for the p systems (Q2−σiI)xi = Qb. This is summarized as Al-
gorithm 2.2, where A = Q2,c = Qb. Herein, the factors ρ

(i)
m are the scaling factors between the

Lanczos vector and the residuals, see [8]:

r(i)m = Qb−Q2x(i)m = ρ
(i)
m vm+1, and ρ

(i)
m = (−1)m‖r(i)m ‖2. (2.2)

Algorithm 2.2: Multishift cg

set x−1 = 0, ρ
(i)
0 = ‖c‖2, τ

(i)
0 = 1, v1 = (1/‖c‖)c

for j = 0,1, . . . do
compute α j+1, β j+1, v j+2 using the Lanczos process for A
for i = 1, . . . , p do

if j > 0 then

τ
(i)
j = 1/

[
1− α j−σi

α j+1−σi

(
ρ
(i)
j

ρ
(i)
j−1

)2
1

τ
(i)
j−1

]
ρ
(i)
j+1 =−τ

(i)
j ρ

(i)
j

β j+1
α j+1−σi

x(i)j+1 = τ
(i)
j (x(i)j + 1

α j+1
r(i)j )+(1− τ

(i)
j )x(i)j−1

r(i)j+1 = ρ
(i)
j+1v j+2

xm = ∑
p
i=1 ωix

(i)
m ;

For the error em of the m-th approximation xm we obtain
p

∑
i=1

ωi(Q2−σiI)−1(Qb)︸ ︷︷ ︸
:=x∗

−xm =
p

∑
i=1

ωi(Q2−σiI)−1r(i)m =
p

∑
i=1

ρ
(i)
m ωi(Q2−σiI)−1vm+1,

so we can express ‖em‖2 as

‖em‖2 = ‖gm(Q2)vm+1‖2 = v∗m+1g2
m(Q

2)vm+1, where gm(t) =
p

∑
i=1

ρ
(i)
m ωi

t−σi
. (2.3)
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The elegant theory of moments and quadrature developed in [5, 6] allows to bound this quantity,
and more generally quantities of the form v∗h(A)v, from below and from above by performing some
steps of the Lanczos process for Q2 with starting vector vm+1. The precise results is as follows:

Theorem 1. Let T̂k denote the tridiagonal matrix in the Lanczos relation (2.1) arising after k steps
of the Lanczos process with starting vector v,‖v‖ = 1. Assume that h : R→ R is at least 2k+ 2
times continuously differentiable on an open set containing [a,b], where spec(A)⊆ [a,b].

(i) Approximating v∗h(A)v with the Gauss quadrature rule using k nodes t j ∈ (a,b) gives

v∗h(A)v = e∗1h(T G
k )e1 +RG

k [h], where T G
k = T̂k,

with the error RG
k [h] given as

RG
k [h] =

h(2k)(ξ )

(2k)!

∫ b

a

[
k

∏
j=1

(t− t j)

]2

dγ(t), a < ξ < b . (2.4)

(ii) Approximating v∗h(A)v with the Gauss-Radau quadrature rule using k−1 nodes t j ∈ (a,b)
with one additional node fixed at a gives

v∗h(A)v = e∗1h(T GR
k )e1 +RGR

k [h].

Here, the tridiagonal matrix T GR
k differs from T̂k in that its (k,k) entry αk is replaced by

α̃k = a+δk−1, where δk−1 is the last entry of the vector δ with (T̂k−1−aI)δ = β 2
k−1ek−1. The

error RGR
k [h] is given as

RGR
k [h] =

h(2k−1)(ξ )

(2k−1)!

∫ b

a
(t−a)

[
k−1

∏
j=1

(t− t j)

]2

dγ(t), a < ξ < b . (2.5)

A similar result as (ii) can be formulated for the Gauss-Lobatto quadrature rules [3]. We apply
Theorem 1 to the rational functions h = g2

m representing the error in (2.3) Inspecting the terms
RG

k [h], RGR
k [h] and RGL

k [h] and noticing that h(`)(t)< 0 (> 0) for t ∈ [0,∞) if ` is odd (even), we get
the following corollary.

Corollary 1. In the case h(t) = gm(t)2 with gm from (2.3), the estimates e∗1h(T G
k )e1and e∗1h(T GL

k )e1

from Theorem 1 (i), (iii) represent lower bounds, the estimate e∗1h(T GR
k )e1 from (ii) represents an

upper bound for the (square of the) error ‖xm− x∗‖2.

3. Lanczos restart recovery

To avoid ambiguities, let us call primary Lanczos process the one of the multishift cg method,
i.e. the Lanczos process through which we obtain the approximations xm. The straightforward
way to obtain the error estimates from Theorem 1 would be to perform k steps of a new, restarted
Lanczos process which takes the current Lanczos vector vm+1 of the primary process as its starting
vector. This results in the restarted Lanczos relation

AV r
k =V r

k+1T r
k+1,k, (3.1)
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and we can now apply the theorem using the tridiagonal matrix T r
k arising from the restarted pro-

cess. This is, however, far too costly in practice: computing the error estimate would require k
multiplications with A—approximately the same amount of work that we would need to advance
the primary iteration from step m to m+ k.

Fortunately, it is possible to cheaply retrieve the matrix T r
k of the secondary Lanczos process

from the matrix Tm+1+k of the primary Lanczos process. This Lanczos restart recovery opens the
way to efficiently obtain all the error estimates from Theorem 1 in a retrospective manner: At
iteration m+ k we get the estimates for the error at iteration m without using any matrix-vector
multiplications with A and with cost O(k2), independently of the system size n.

For m = 0,1, . . ., we define the tridiagonal matrix T (m+1,k) as the diagonal block of Tm+1+k

ranging from rows and columns max{1,m+1−k} to m+1+k. So T (m+1,k) is a (2k+1)×(2k+1)
matrix, except for m+1≤ k, where its size is (m+1+ k)× (m+1+ k).

The following theorem, see [3], shows that for Lanczos restart recovery we basically have to
run the Lanczos process for the tridiagonal matrix T (m+1,k), starting with the k + 1st unit vector
ek+1 ∈ C2k+1.

Theorem 2. Let the Lanczos relation for k steps of the Lanczos process for T (m+1,k) with starting
vector ek+1 ∈ C2k+1 (em+1 ∈ Cm+1+k if m+1≤ k) be given as T (m+1,k)Ṽk = Ṽk+1,kT̃k+1,k.

Then the matrix T r
k+1,k of the restarted Lanczos relation (3.1) is given as

T r
k+1,k = T̃k+1,k. (3.2)

The above theorem shows that we can retrieve T r
k+1,k from Tm+k+1,m+k by performing k steps

of the Lanczos process for the (2k+ 1)× (2k+ 1) tridiagonal matrix T (m+1,k). Herein, each step
has work O(k), so that the overall cost for computing T r

k+1,k is O(k2). So we conclude that the total
cost for computing the error estimates from Theorem 1 is also O(k2).

Algorithm 3.1: Lanczos approximation for Zolotarev function with error bounds

set x−1 = 0, ρ0 = ‖b‖2, τ0 = 1
choose k
for m = 0,1, . . . do

compute αm+1, βm+1, vm+2 using the Lanczos process for A
for i = 1, . . . , p do /* loop over poles */

update x(i)m+1 from x(i)m /* multishift cg from Algorithm 2.2 */

xm+1 = ∑
p
i=1 ωix

(i)
m+1

if m > k then
perform k steps of the Lanczos process for T (m−k,k)

this yields the tridiagonal matrix T̂k ∈ Ck×k

`m−k = ‖gm(T̂k)e1‖2

um−k = ‖gm(T̂ GR)e1‖2 /* T̂k, T̂ GR given in Theorem 1(ii) */
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Figure 1: Error bounds and exact error for Zolotarev approximation for sign(Q), 84 lattice.

Algorithm 3.1 shows how we suggest to use the results exposed so far. It computes the Lanczos
approximations xm for g(A)b with g(t) = ∑

p
i=1

ωi
t−σi

and bounds `m−k,um−k for the error at iteration
m based on the Gauss and the Gauss-Radau rule.

4. Numerical results

In this section we report the results of several numerical experiments with relatively small lat-
tices of size 84 to 164. In our computations we used the common deflation technique as described,
e.g. in [9]: We precompute the first, λ1, . . . ,λq say, eigenpairs of smallest modulus. With Π de-
noting the orthogonal projection onto the space spanned by the corresponding eigenvectors, we
then have sign(Q)b = sign(Q(I−Π)b)+ sign(QΠb). Herein, we know sign(QΠb) explicitly, so
that we now just have to approximate sign(Q(I−Π)b). In this manner, we effectively shrink the
eigenvalue intervals for Q, so that we need fewer poles for an accurate Zolotarev approximation
and, in addition, the linear systems to be solved converge more rapidly. Within an iterative solver
for the overlap operator this approach results in a major speedup, since sign(Q)b must usually be
computed repeatedly for various vectors b. For Algorithm 3.1 it has the additional advantage that
we immediately have a very good value for a, the lower bound on the smallest eigenvalue of Q2

for which we can take λ 2
q . In all our computations we deflated the smallest 30 eigenvalues, and we

chose the Zolotarev approximation to have error less than 10−9.
Figure 1 shows results for the 84 configuration available in the matrix group QCD at the UFL

sparse matrix collection [2] as matrix conf5.4-00l8x8-2000.mtx. This is a dynamically
generated configuration at β = 5.4. The (effective) condition number of the (deflated) matrix Q2

is approximately 4.5 · 104. The left column reports upper and lower bounds from Algorithm 3.1
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Figure 2: Error bounds and exact error for Zolotarev approximation for sign(Q), 164 lattice, Algorithm 3.1.

whereas the right column gives the estimates from earlier work [4] which are known know to be
lower bounds. The top row takes k = 2 in Algorithm 3.1 (and a similar parameter in the method
from [4]), the bottom row refers to k = 10. We see that going from k = 2 to 10 results in a significant
gain in accuracy and that for k = 10 the upper and lower bounds just differ by a factor of 10.

Figure 2 gives the results for Algorithm 3.1 with k = 10 for a configuration on a 164 lattice.
The configuration was the result of a quenched simulation. The condition number of the deflated
matrix Q2 is now 642, i.e. less than for the 84 lattice. Therefore, the convergence speed as well as
the quality of the bounds are better than for the 84 lattice.
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