
P
o
S
(
L
a
t
t
i
c
e

2
0
1
1
)
0
3
3

Progress on the QUDA code suite

Ron Babich, Richard Brower
Center for Computational Science, Boston University, Boston MA 02215, USA
E-mail: rbabich@bu.edu,brower@bu.edu

Mike Clark
Harvard-Smithsonian Center for Astrophysics, Harvard University, Cambridge, MA 02143, USA
E-mail: mikec@seas.harvard.edu

Steven Gottlieb ∗

Physics Department, Indiana University, Bloomington, IN 47405, USA
E-mail: sg@indiana.edu

Balint Joó
Thomas Jefferson National Accelerator Facility,
Newport News, VA 23606, USA
E-mail: bjoo@jlab.org

Guochun Shi
National Center for Supercomputing Applications, University of Illinois, Urbana, IL 61801, USA
E-mail: gshi@ncsa.uiuc.edu

At the time of Lattice 2010, we were about to announce a distribution of the code (QUDA 0.3) that

supported both Wilson/clover and improved staggered quarks for computation on a single GPU.

Multi-GPU code was running for both solvers, but with the restriction of grid partitioning in only

the time dimension. In the past year, we developed code that allows us to cut the lattice in all

four dimensions. This allows us to scale computations to order 100 GPUs yielding multi-teraflop

performance. We will present results for both types of solvers on GPU clusters and for other

kernels important for physics projects. We also compare performance and cost-effectiveness of

full application codes running on CPUs with our GPU accelerated code.

The XXIX International Symposium on Lattice Field Theory - Lattice 2011
July 10-16, 2011
Squaw Valley, Lake Tahoe, California

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:rbabich@bu.edu,brower@bu.edu
mailto:mikec@seas.harvard.edu
mailto:sg@indiana.edu
mailto:bjoo@jlab.org
mailto:gshi@ncsa.uiuc.edu

P
o
S
(
L
a
t
t
i
c
e

2
0
1
1
)
0
3
3

Progress on the QUDA code suite Steven Gottlieb

1. Introduction

As the performance of Graphics Processing Units (GPUs) has rapidly increased in recent years
and the ease of programming them has improved, they have become increasingly popular in our
field. We have been developing a code suite for lattice QCD called QUDA based on NVIDIA’s
C for CUDA extensions to the C language [1, 2, 3]. We have been making steady progress on
improving the capabilities of our code, most notably by including support formulti-GPU running
[4].

We describe the current state of the QUDA code distribution and the challenges of dealing
with an architecture whose balance is not ideal for lattice QCD. We also present benchmarks for
our inverters and evaluate the cost-effectiveness of one production code by comparing running with
GPUs and without them.

2. Current distribution

QUDA is now available through the github service at lattice.github.com/quda. Version 0.3.2
was released on January 18, 2011 and is the most recent stable release. One can also download the
development version of the code from the source code repository. However, as the code is being
actively developed, there is no guarantee of the correctness of the development version.

The current release includes solvers for a number of lattice quark formulations. These include
Wilson/Clover, twisted mass, improved staggered (both asqtad and HISQ), and domain wall quarks.
There are mixed-precision implementations of the solvers for both the conjugate gradient algorithm
and for BiCGstab. Double precision, single precision and half precision (16-bit fixed-point) are
supported. In addition to the solvers, the staggered implementation includes code for asqtad link
fattening, as well as force terms for the one-loop improved Symanzik gaugeaction and asqtad
fermions. There is also a multi-shift CG solver.

From github, one can download the distribution, sign up for a mailing list quda-announce, or
request help.

3. Unbalanced architecture

The GPU has tremendous peak floating point performance compared with thetypical CPUs in
todays computers; however, the memory bandwidth of about 150 GB/s, whilemuch greater than
the memory bandwidth of the host system, is insufficient to keep the floating point units busy for
applications such as lattice QCD. The PCI bus is also a crucial performance bottleneck. The bus
speed of approximately 5 GB/s limits transfers of data from host memory to and from the GPU and
is also a factor in passing messages from one GPU to another in multi-GPU runs.

In order to pass a message from a GPU on one node to a GPU on another node, the data must be
moved five times. In the first stage, the data is copied from the GPU memory to the host. However,
the data will then reside in what is called pinned memory dedicated to the GPU. There is then an
extra copy to pinned memory for the Infiniband card. The data is then copiedover the network
to the other node, where it must be transferred from the pinned memory forthe infiniband card
to pinned memory for the GPU and finally into the GPU. NVIDIA and Mellanox have announced

2

P
o
S
(
L
a
t
t
i
c
e

2
0
1
1
)
0
3
3

Progress on the QUDA code suite Steven Gottlieb

Model (Architecture) Cores BW SP DP RAM
(GB/s) (GF/s) (GF/s) (GB)

GeForce GTX 280 (GT200) 240 142 933 78 1.0

GeForce GTX 285 (GT200b) 240 159 1062 88 1–2

Tesla C1060 (GT200) 240 102 933 78 4.0

Tesla S1070 (GT200) four copies of above

GeForce GTX 480 (Fermi) 480 177 1345 168 1.5

Tesla C2050 (Fermi) 448 148 1030 515 3.0

Tesla C2070 (Fermi) 448 148 1030 515 6.0

Table 1: Characteristics of systems studied, including model type,number of cores, peak bandwidth of GPU
memory, peak floating point speed in single and double precision, and total GPU memory.

a GPU Direct protocol that should eliminate the copy between the two types of pinned memory.
Details of the timing without GPU Direct appear in Ref. [5].

Table 1 presents a comparison of several types of GPU hardware to which we have access. The
GTX models are primarily designed for consumer graphics, while the Tesla and Fermi models with
four digit designations are designed for high performance servers. The second column gives the
number of compute cores in the GPU, the third column contains the peak bandwidth of the GPU
memory, and the fourth and fifth columns give the peak single and double precision performance,
respectively. The last column in the table has the GPU memory capacity. Note that only the
Fermi C2050 and C2070 have a peak double precision speed that is half that for single precision.
The other models all have much lower double precision peak performance (1/12 or 1/8 of single
precision). The Tesla S1070 packages four GPUs together in such a way that pairs of GPUs share
a PCI bus. Finally, only the C2050 and C2070 support error correction.

4. Grid partitioning

The production release of QUDA 0.3.2 (1/18/11) only supports partitioning the lattice in the
time direction. However, the development version of the code supports cutting all four dimensions
for the solvers. Benchmarks can be found in the next section. In addition, some other routines such
as the asqtad fat link calculation support partitioning in all four dimensions.

5. Benchmarks

We will first present our newest results for partitioning the lattice in up to four dimensions.
We also have some older results for one-dimensional partitioning on production jobs, including full
application performance where some of the application is running on the CPU.In this paper, we will
emphasize results for staggered quarks. A companion contribution will emphasize Wilson/Clover
results [6].

Figure 1 displays total performance of the asqtad solver [4] on a 643
×192 lattice, which is

the largest grid among the MILC ensembles [7]. A mixed precision multi-mass solver was used for

3

P
o
S
(
L
a
t
t
i
c
e

2
0
1
1
)
0
3
3

Progress on the QUDA code suite Steven Gottlieb

Figure 1: Performance of the asqtad conjugate gradient solver on the Edge computer vs. the number of
GPUs. The problem size is fixed at 643

×192.

Figure 2: Performance of the clover BiCGstab solver on the Edge computer vs. the number of GPUs. The
problem size is fixed at 323

×256.

4

P
o
S
(
L
a
t
t
i
c
e

2
0
1
1
)
0
3
3

Progress on the QUDA code suite Steven Gottlieb

computer size 1 2 4 4×1 8 16

J/Psi 203
×64 39.3 34.7 23.7 30.3 10.7

J/Psi 283
×96 — 41.4 37.5 37.5 17.7

Dirac 283
×96 — — — 49.5 42.6 27.6

Table 2: Results on the multimass, multiprecision asqtad inverter on Fermilab and Dirac GPU nodes. All
results in GFs/GPU. Dirac has one GPU per node. At Fermilab there are two GPUs per node. The column
labeled 4×1 contains results using one GPU per node.

from 64 to 256 GPUs on the Edge GPU cluster at Livermore. A speed of 5.5TFlops was achieved
with 256 GPUs. Results are shown for partitioning the lattice in two (Z,T), three (Y,Z,T) or four
(X,Y,Z,T) dimensions. The best performance is achieved using the three dimensional partition.
Performance here is comparable to what has been seen on several thousand CPU cores.

In Fig. 2, we show solver performance [4] on a 323
×256 anisotropic Clover configuration.

A mixed precision BiCGstab solver was used [8]. The performance of 8 Tflops is comparable to
what has been seen on 16K cores of Jaguar (Cray XT5) or Intrepid (BlueGene/P). More details,
including results for an additional algorithm with improved scaling can be found in the companion
paper [6].

We have also run benchmarks on much more modest grid sizes. In Table 2, we show bench-
marks for the multimass, multiprecision staggered solver on 203 and 283 lattices. The first two lines
come from runs at Fermilab using S1070 GPUs servers. Each compute node is attached to two of
the GPUs in the S1070. These two GPUs share the PCI bus, so we ran fourGPU benchmarks using
two different setups. In the column marked 4, we use two nodes with two GPUsin each node. In
the column marked 4×1, we used four nodes with just one GPU per node. By comparing results
in these two columns we can see whether sharing the PCI bus leads to reduced performance. We
note that for the smaller grid there is a big difference: 23.7 GF/GPUvs. 30.3 GF/GPU. However
for the larger grid, performance is identical. For the smaller grid with four GPUs, the local volume
is 203

×16, whereas for the larger grid it is 283
×24. In the former case, there is not enough local

work to allow overlap of communication with computation when the communication is slowed by
the shared bus, but in the latter case, the message passing can be overlapped with computation.
The Dirac cluster at NERSC has two quad-core 2.4 GHz Nehalem CPUs andone C2050 GPU per
compute node. The C2050 has 3 GB of memory per GPU and the larger lattice requires a minimum
of four GPUs. We see quite reasonable performance on up to 8 GPUs. For the runs with 8 GPUs,
the lattice was cut in the Z and T dimensions. With 16 GPUs, it was also cut in the Y dimension.

We have also done some tests of asqtad link fattening. These tests were run on Longhorn, a
GPU cluster at the Texas Advanced Computing Center. Each node has two quad-core 2.53 GHz
Nehalem processors and two FX5800 GPUs. The link-fattening code is run in double precision. In
Table 3, we show results for a 643

×192 lattice on Longhorn and a 483
×144 lattice on Dirac. In

each case, we compare the speed of running on all the CPU cores with running on the GPUs. On
Longhorn the GPU code is about 3.2 times faster than the CPU code, and on Dirac the speedup is
about 3.5.

5

P
o
S
(
L
a
t
t
i
c
e

2
0
1
1
)
0
3
3

Progress on the QUDA code suite Steven Gottlieb

nodes cores sublattice GF/core GPUs sublattice GF/GPU
Longhorn Quadro FX5800 643

×192
24 192 162

×322 0.72 48 64×322
×16 9.2

Dirac C2050 483
×144

32 256 122
×24×18 0.54 32 48×242

×18 15.3

Table 3: Performance of the asqtad link fattening code on Longhorn atTACC and Dirac at NERSC. Perfor-
mance is either per core or per GPU. Longhorn has two GPUs per node and Dirac has one. Details of the
CPUs may be found in the text.

6. Cost-effectiveness

We wanted to compare the cost-effectiveness of the CPU and GPU codes.The FNAL J/Psi
cluster is a computer where we know the cost of the nodes with or without the GPUs. This cluster
was purchased on October, 2008 and March, 2009. Don Holmgren supplied us with the cost
information. The base price of an 8-core node is $2213. A GPU node hasextra memory and 2
GPUs at a cost of $672 and $3222, respectively. Thus, the total costof the GPU node is $6107.
Assuming 8,700 hours of operation per year and 3 years of running, thecapital cost is 0.0106
$/(core-hr) for CPU running and 0.117 $/(GPU-hr) for GPU running.

In Table 4, we compare the run time of a production job studying electromagneticcorrections
on a 283×96 lattice. The first column of the table gives the number of cores or GPUs. the second
column is the time for the job, and the third is either core-hr or GPU-hr to run the job. The fourth
column is the cost of the job. In each section of the table, rows correspondto running on 1, 2, 4 and
8 nodes. We see that the runs with GPUs are more cost-effective. We alsonote that one or two node
runs are best for the GPU runs and that the cost-effectiveness on theCPU runs is not increasing
as steeply when we run on more nodes. For one or two nodes, the GPU runs are about 3.75 times
more cost-effective than the CPU runs, and they are about ten times faster.

7. Conclusions

We find that for large lattices we can run jobs using up to 256 GPUs when ourmulti-dimensional
partitioning is used. Multi-dimenional partitioning is essential for some of the large spatial volume
ensembles we have archived. We are able to achieve multi-teraflop speedswith both Wilson/clover
and staggered quarks.

We have also seen that GPU clusters can be several times more cost-effective than CPU only
clusters. This was seen for the J/Psi cluster at Fermilab which is part of theUSQCD Lattice
Computing Project for which we have cost data. As we gain experience withmore production
jobs on various hardware, we will be better able to optimize the design of our GPU clusters. The
bottleneck of the PCI bus can be significant and it is important not to overload that bus by having
too many GPUs share it.

There is much opportunity for additional code development, performance tuning, and perfor-
mance modeling. The QUDA suite is open source, and we encourage you to join in the fun (and
effort) of enhancing it and using it.

6

P
o
S
(
L
a
t
t
i
c
e

2
0
1
1
)
0
3
3

Progress on the QUDA code suite Steven Gottlieb

CPU code
cores seconds core-hr cost ($)

8 27091 60.20 0.64

16 13954 62.02 0.66

32 8463 75.23 0.80

64 4236 75.3l 0.80

GPU code
GPUs seconds GPU-hr cost ($)

2 2566 1.43 0.17

4 1411 1.57 0.18

8 1105 2.46 0.29

16 985 4.38 0.51

Table 4: Comparison of cost to run Fermilab’s J/PSI cluster either using the CPU alone or the GPU for the
solver and the CPU for the rest of the application. The numberof cores or GPUs is in the first column. The
second column has the run time in seconds, and the third column converts this to core-hr or GPU-hr. The
final column has the cost to run the job, assuming a three year lifetime for the computer.

8. Acknowledgements

We are grateful to LLNL (Edge), NERSC (Dirac), FNAL (J/Psi) and TACC (Longhorn) where
we ran benchmarks. This work was supported in part by NSF grants OCI-0946441, OCI-1060012,
OCI-1060067, and PHY-0555234, as well as DOE grants DE-FC02-06ER41439, DE-FC02-06ER41440,
DE-FC02-06ER41443, DE-FG02-91ER40661, and DE-FG02-91ER40676. BJ additionally ac-
knowledges support under DOE grant DE-AC05-06OR23177, under which Jefferson Science As-
sociates LLC manages and operates Jefferson Lab. GS is funded through the Institute for Ad-
vanced Computing Applications and Technologies (IACAT) at the University of Illinois at Urbana-
Champaign.

References

[1] K. Barros, R. Babich, R. Brower, M. A. Clark and C. Rebbi,PoS(LATTICE 2008)045

[arXiv:0810.5365 [hep-lat]].

[2] S. Gottlieb, G. Shi, A. Torok and V. Kindratenko,PoS(LATTICE 2010)026.

[3] R. Babich, M. A. Clark and B. Joo, arXiv:1011.0024 [hep-lat].

[4] R. Babich, M. A. Clark, B. Joo, G. Shi, R. C. Brower and S. Gottlieb, arXiv:1109.2935 [hep-lat].

[5] S. Shi, S. Gottlieb, A. Torok, V.V. Kindratenko, Proc. IEEE Intl. Parallel & Distributed Processing
Symposium; 2011, IEEE Press.

[6] M. A. Clark, R. Babich, R. Brower, S. Gottlieb, B. Joó, G. Shi, PoS(LATTICE 2011)029.

[7] A. Bazavovet al., Rev. Mod. Phys.82, 1349 (2010) [arXiv:0903.3598 [hep-lat]].

[8] M. A. Clark, R. Babich, K. Barros, R. C. Brower and C. Rebbi, Comput. Phys. Commun.181, 1517
(2010) [arXiv:0911.3191 [hep-lat]].

7

http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE 2008)045
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE 2010)026
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE 2011)029

