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1. Introduction

Recently, experimental atomic physicists have been able totrap cold polarizable atoms in
periodic potentials created by crossed laser beams. They can create "clean" lattice systems and
have successfully engineered local and nearest-neighbor interactions that approximately recreate
Hubbard-like models, often used in condensed matter, on table tops. I discuss the possibility of
using the same technology for lattice gauge theory. I first review the basic features of optical
lattices. For a recent review article, I recommend Ref. [1].I then discuss some of the basics
tools for model building (literally!). For a more comprehensive “toolbox" see Ref. [2]. Atomic
physics is a rapidly expanding field where theorists and experimentalists work closely together [3].
Up to now, the possibility of creating dynamical gauge fieldsis quite open [4]. I will make some
suggestions at the end.

2. Optical lattices

Alkali-metals (Li, Na, K, Rb, Cs) are often used in cold atomsexperiments because of their
loosely bound electron in the the outer shell. Typical choices are87Rb (a boson: 37 e−, 37 p and 50
n) or 6Li (a fermion: 3 e−, 3 p and 3 n). The polarizable cold atoms are trapped in standing waves
created by counterpropagating laser beams in 1, 2 or 3 dimensions. The periodic potential is due to
the dipole moment induced by the linearly polarized laser beam and reads:

V (r) =−(1/2)α(ω)|E(r)|2 , (2.1)

with

α(ω)∼ |< e|d|g > |2/h̄(ω0−ωL) . (2.2)

For instance, it is possible to create a 3D lattice potentialwith a cubic symmetry by using 3 mutually
orthogonal laser beams of the same wavelengthλL. The periodic potential reads

V (x,y,z) =V0(sin2(kx)+sin2(ky)+sin2(kx)) , (2.3)

with k = 2π/λL. The lattice spacing isa = λL/2 . The depth of the potentialV0 is measured in units
of the recoil energyEr ≡ (h̄k)2/2matom and can be tuned continuously by changing the intensity of
the laser.

In order to fix the ideas, we consider the experimental realization of the Bose-Hubbard model
of Ref. [5]. Rubidium atoms were used with a laser operating at a wavelengthλL = 856nm. The
recoil energy is 1.3×10−11 eV≃ kB1.5×10−7K. For reference, the critical temperature for Bose
condensation in Rubidium with a specific volume of(λL/2)3 is close to 10−7K according to the
ideal gas formula. The recoil momentum is 1.5eV/c and the recoil velocity about 5 mm/s. Of the
order ofNatoms ≃ 653 were used. Assuming one atom per site, the physical size of the lattice is
of the order of 30µm. It takes a few milliseconds for atoms moving at speeds of theorder of the
recoil velocity to go across the lattice size. The depth of the potentialV0 was increased up to 20Er.
For this maximal value, the harmonic frequency is approximately 30 kHz.
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The Bose-Hubbard model can be used to describe a set of bosonic atoms trapped in the poten-
tial (2.3). The Hamiltonian reads

H =−J ∑
〈i, j〉

(a†
i a j +h.c.)+U ∑

i=1

ni(ni −1) . (2.4)

The notation〈i, j〉 means the sum over nearest neighbors on a cubic lattice. Theai and their
conjugate obey bosonic commutation relations, andni = a†

i ai. The phase diagram of this model
with a chemical potential is discussed in Ref. [6]. The constantJ andU can be expressed in terms
of integrals involving the Wannier functions for the periodic potential (2.3). Explicit expressions
can be found in section II of Ref. [3]. For a shallow enough potential, J >> U and tunneling
dominates, leading to a superfluid phase. On the other hand, forV0 large enough,J <<U , tunneling
is suppressed and we are in the Mott insulator phase. For moredetails see Ref. [1].

3. What can we learn from experiments with optical lattices?

One important experimental method to learn about the spacial correlations functions

G(x−y) =< a†
xay > , (3.1)

is to suddenly release the optical potential. If the interactions after the release can be neglected, the
state of the system will evolve according to its plane wave decomposition. After a given time of
flight t, the density distributionn(x) can be imaged and interpreted according to the relation

n(x) =

(

M
h̄t

)3

|ŵ(k)|2Ĝ(k) , (3.2)

with k = Mx/(h̄t). In the superfluid phase (small enoughV0/Er), the phase coherence produces
sharp peaks at reciprocal lattice vectors. AsV0 is increased, the interference peaks surrounding the
zero momentum peak become more pronounced. Across the quantum phase transition to the Mott
insulator phase, this trend gets reversed, but the interference peaks subside for a while. Deep in the
Mott insulator phase (V0 >> Er), the distribution becomes Gaussian.

At finite temperature and unity filling, the phase diagram of the Bose-Hubbard model in the
(U/J,T ) plan may look vaguely reminiscent to the QCD one in the(µ ,T ) plane (as far as the
shape is concerned). A schematic picture of the phase diagram, a discussion of the experimental
setup and theoretical calculations as well as appropriate references are provided in Ref. [3]. In the
homogeneous case, the superfluid phase is bounded by an approximate quarter of circle surrounding
(0,0). In practice, the inhomogeneities due to the trappingpotential may play an important role.
Experimentally, the temperature is raised by controlled heating sequences up to temperatures of 400
nK. Theoretically, the Bose-Hubbard Hamiltonian with a site-dependent chemical potential can be
simulated with the worm algorithm. The experimental and simulated time of flight distributions for
various values ofU/J andT are shown in Fig. 3 of Ref. [3] and show good agreement between
theory and experiment.
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4. Model building

The example discussed in the previous section shows that it is possible to build a physical
system that approximates a lattice many-body Hamiltonian.Can we modify this setup in order to
get several flavors of fermions with relativistic dispersion relations? Using three of the 6 hyperfine
levels from the F=1/2 and 3/2 states of a6Li Fermi gas near a Feshbach resonance, one can create
a quantum degenerate three-state Fermi gas with approximate SU(3) symmetry [7]. These three
states leads to interesting scattering length patterns formagnetic fields between 500 and 1000
Gauss.

Relativistic dispersion relations for the fermions can be obtained by using “bicolored” lattices.
After introducing Fourier modes, the dispersion relation is obtained by solving a quadratic equa-
tion. The fact that two possible signs for the square root of the discriminant leads to Dirac cones.
One well-known example is graphene [8]. It is also possible to meet such a requirement by cre-
ating different potential depths on alternate sites [9]. Interesting ways of coupling Dirac fermions
to periodic or staggered gauge potentials by combining two types of square lattices have also been
proposed in Refs. [10, 11]. More generally, many interesting tools are available for theoretical and
experimental “model building". For a “toolbox" see Ref. [2].

5. Dynamical Gauge fields?

We now discuss the most important ingredient: gauge fields. Background gauge fields can be
generated by rotating the optical lattice. In a rotating frame, we have the “minimal substitution"

d~x
dt

→
d~x
dt

−~Ω×~x , (5.1)

which corresponds to a constant magnetic fielde~B = 2m~Ω. Global non-abelian Berry phases can
be obtained from adiabatic transformations in degenerate quantum mechanical systems [12]. Such
phases can be obtained from “dark states" in a tripod system [13]. GlobalSU(N) potentials can
also be created usingN internal states of atoms and laser assisted state sensitivetunnelling [14].
All these constructions are global, however, locally rotating deformations of optical lattice have
been studied recently [15].

As the essential physical properties at short and large distances come from gauge fields, it
seems essential to be able to design experimental setups with dynamical gauge fields. An idea
that would come naturally to many particle physicists is to build the link variableUx,i

ab as a
“condensate" of the site variablesφa

x at the ends of the link [4]:

Uab
x,ei

= φ⋆a
xφb

x+ei
. (5.2)

After searching the literature, we found models that have a chance to be implemented on optical
lattices where such a situation occurs [16, 17, 18]. The starting point is the (Fermi-)Hubbard model
with Hamiltonian

H =−t ∑
〈i, j〉,α

( f †
i,α f j,α +h.c.)+U

N

∑
i=1

ni↑ni↓ , (5.3)
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wheret characterizes tunneling to nearest neighbor sites andU > 0 controls the onsite repulsion.
The f j,α and f †

i,α satisfy anticommutation relations andα is a spin index that takes two values.
We now restrict ourselves to half-filling (number of fermions = number of sites) and two space

dimensions. Att = 0, and forN sites, there are 2N ground states with exactly one fermion at
every site since neighbor spins have no influence on each other. In the limit U >> t, the cost of
a single tunnelling is small, but the cost of double occupancy is large. At second order int, it
is possible to exchange two neighbor fermions without affecting the single occupancy constraint.
Using a canonical transformation to eliminate the first termin Eq. (5.3) and neglecting terms of
order higher thant2, one obtains, up to a constant, the Heisenberg model withJ = 4t2/U (this J
should not be confused with the one used for the Bose-Hubbardmodel ):

H = J ∑
<i j>

Si ·Sj , (5.4)

with
Si =

1
2

f †
iα σαβ fiβ , (5.5)

or equivalently

H = ∑
<i j>

−
1
2

J f †
iα f jα f †

jβ fiβ + ∑
<i j>

J(
1
2

ni −
1
4

nin j)

with the constraint
f †
iα fiα = 1 . (5.6)

This model has aSU(2) space-dependent local gauge-invariance. This property and other inter-
esting features are discussed in Refs. [16, 17, 18, 19]. The connection with the Hamiltonian
formulation of LGT (one doublet of fermions coupled toSU(2) gauge fields) in the temporal gauge
can be made more clear by rewriting the four fermion interactions in H using auxiliary fields at-
tached to the links(i, j) and coupled linearly to fermions bilinear (one at each end ofthe link).
Using the Lagrangian formulation (with a continuous time),it is possible to introduce Lagrange
multipliers that enforce the condition (5.6), play the roleof time-like SU(2) gauge fields and make
the Lagrangian invariant under time-dependent gauge transformations.

Note that the correspondence between the original Hubbard model and the LGT model is
only valid at the lowest nontrivial order in the strong coupling expansions (largeU for Hubbard at
half-filling, large g for LGT). In particular, standard plaquette or other interactions could appear
at higher order. Finding many-body Hamiltonians that can beexperimentally implemented and
which are equivalent to LGT models as we know them is a challenge for the future. A possibility
suggested by Cheng Chin is to use two lattices one having molecules that can hop and induce
the desired interactions on the other lattice. Quantum linkformulations [20] might also suggest
possible implementations of optical lattice models with local gauge invariance.

6. Functional derivatives?

In modern quantum field theory, then-point functions are obtained as functional derivatives.
Generically, we can write

< ABC · · ·>=
∂

∂JA

∂
∂JB

∂
∂JC

. . . lnZ({J})|{J}=0 , (6.1)
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for an HamiltonianHJ = H +AJA +BJB +CJC . . . . Very recently, single atom manipulations have
been performed experimentally [21]. Changes in free energydue to atom removal might provide
information regarding correlation functions.

7. Conclusions

In conclusion, the study of optical lattices is a new and exciting area of interest to all lattice
practitioners. The experimental implementation of standard QFT tools (functional derivatives ...)
needs to be developed. The question of dynamical gauge fieldsis wide open and could lead to an
interesting model-building effort involving several lattice communities.
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