
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
0
4
1

Twisted-mass reweighting for O(a) improved Wilson
fermions

Chuan Miao∗,a,b Harvey B. Meyera and Hartmut Wittiga,b

aInstitut für Kernphysik, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany
bHelmholtz Institute Mainz, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany
E-mail: chuan@kph.uni-mainz.de, meyerh@kph.uni-mainz.de,
wittig@kph.uni-mainz.de

We test the reweighting of the quark determinant of O(a) improved Wilson fermions in the
domain-decomposed hybrid Monte-Carlo algorithm. Specifically, we implement a reweighting
in a twisted-mass parameter proposed by Palombi and Lüscher in Nf = 2 QCD. We find that
at equal acceptance rate, the algorithm is significantly more stable on a 32× 643 lattice upon
switching on the reweighting parameter. At the same time, the reweighting factor does not fluctu-
ate strongly and hence is under control. At equal statistics, the uncertainty on the pion correlator
is comparable to the case of the standard, unreweighted algorithm.
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1. Introduction

Simulating Wilson type fermions at small quark masses is challenging, in particular because
of the potential instabilities caused by the fluctuations of the low modes of the Dirac operator. A
direct study of the low-lying spectrum of Wilson Dirac operators reveals that a spectral gap forms
for large volume lattices [1]. However, occasional near-zero modes may appear since chiral sym-
metry is explicitly broken by the discretization. In simulations based on the hybrid Monte-Carlo
algorithm (HMC, [2]), this effect can lead to large ‘spikes’ in the history of the molecular dynamics
Hamiltonian violation. Some time ago, Palombi and Lüscher proposed [3] to reweight the fermion
determinant so that the zero modes are suppressed by construction. The low-mode contribution
to any observable is faithfully restored by including the reweighting factor in the ensemble aver-
age. For a review of other applications of reweighting with various fermion discretizations, see the
contribution of A. Hasenfratz at this conference.

In the simplest version of the idea, a twisted mass term is added to the Dirac operator,

D(µ) = DW + iµγ5 , (1.1)

where DW is the O(a) improved Wilson Dirac operator (see e.g. [4]). For Nf = 2, the weight

W = det

(
D†

W DW

D†
W DW +µ2

)
(1.2)

should be included in the expectation value of the observable O ,

〈O〉=
〈OW 〉

µ

〈W 〉
µ

, (1.3)

where 〈· · · 〉
µ

stands for the ensemble average for the modified Dirac operator D(µ).
Evaluating the reweighting factor W exactly is normally not possible, nor is it in fact required;

instead it can be calculated stochastically. One may add a set of N pseudo-fermion fields (ηk, k =

1, . . . ,N) to the theory with action

Sη =
N

∑
k=1

(ηk,ηk) , (1.4)

and the reweighting factor is replaced by

WN =
1
N

N

∑
k=1

exp

{(
ηk,

[
1− D†

W DW +µ2

D†
W DW

]
ηk

)}
. (1.5)

The simulation with respect to the modified Dirac operator proceeds as before and the reweighting
factor W is estimated, for each gauge configuration, according to Eq. (1.5) with N randomly chosen
pseudofermion fields. Obviously, the larger the number of pseudofermion fields, the more accu-
rate the estimate. Our tests show that 40 pseudofermion fields are sufficient to yield satisfactory
reweighted measurements of meson correlators on 323× 64 lattices. As is visible from Eq. (1.5),
fluctuations in the reweighting factor W that strongly suppress the contribution of certain config-
urations to the statistical average can occur if the original Dirac operator DW admits very small
eigenvalues.
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Convincing arguments were given by Palombi and Lüscher that the reweighting factor would
not end up being exponentially small in the volume, as one would at first expect. This follows
from the fact that the fluctuations of the lowest eigenvalues become smaller when the volume is
increased [1] (possibly with the exception of a few). Nevertheless an explicit test is needed to
ascertain that the twisted-mass reweighting idea works in practice, and this is the subject of this
work.

2. Implementation

We use the domain decomposition preconditioning [5] of the hybrid Monte-Carlo algorithm
(DDHMC). Our simulation code is based on Lüscher’s open-source DDHMC code [6]. In this
algorithm, the whole lattice is divided into check-board coloured blocks. Using Ω or Ω∗ to denote
the union of white or black blocks respectively, the Dirac operator assumes the form

DW =

(
DΩ D∂Ω

D∂Ω∗ DΩ∗

)
, (2.1)

where DΩ, DΩ∗ denotes the Dirac operator respectively on block Ω, Ω∗ with Dirichlet boundary
condition, and D∂Ω is the sum of all hopping terms from the exterior boundary ∂Ω of Ω to the
boundary ∂Ω∗ of Ω∗. The fermion determinant is factorized into local block parts and a global
part. For Nf = 2 it reads

detD†
W DW = detR†R · ∏

Λ

detD†
Λ

DΛ , (2.2)

where Λ runs through every block and

R = 1−P∂Ω∗D
−1
Ω

D∂ΩD−1
Ω∗D∂Ω∗ . (2.3)

With even-odd preconditioning on every block determinant, Eq. (2.2) can be further written as

detR†R ·∏
Λ

[
det
(
Q†

eeQee
)

det
(
Q†

ooQoo
)

det
(

Q−1
ee Q̂

)†(
Q−1

ee Q̂
)]

, (2.4)

where
Q̂ = Qee−QeoQ−1

oo Qoe (2.5)

and the site ordering has been chosen so that DΛ has the form

γ5DΛ =

(
Qee Qeo

Qoe Qoo

)
. (2.6)

The forces of the MD evolution steps are

(ω,FΛ) = 2Re
(

Q̂−1QeeφΛ,δω

(
Q̂−1Qee

)
φΛ

)
−2ReTr

(
δQee

Qee
+

δQoo

Qoo

)
, (2.7)

(ω,FR) = 2Re
(
R−1

φR,δR−1
φR
)
, (2.8)

where φΛ is the pseudofermion fields supported on the even sites of block Λ and φR is the pseud-
ofermion field residing on the block boundaries.
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The modifications required to introduce the twisted mass term are relatively benign. For the
modified Dirac operator Eq. (1.1), the fermion determinant becomes

detD(µ)†D(µ) = det(DW − iµγ5)(DW + iµγ5) (2.9)

where the reweighting parameter µ appears with opposite sign for up and down quarks. The forces
take the form

(ω,FΛ) = 2Re
(

Q̂(µ)−1(Qee + iµ)φΛ,δω

(
Q̂(µ)−1(Qee + iµ)

)
φΛ

)
(2.10)

−2ReTr
(

QeeδQee

Q2
ee +µ2 +

QooδQoo

Q2
oo +µ2

)
,

(ω,FR) = 2Re
(
R(µ)−1

φR,δωR(µ)−1
φR
)
, (2.11)

where

Q̂(µ) = Qee + iµ−Qeo(Qoo + iµ)−1Qoe , (2.12)

R−1(µ) = 1−P∂Ω∗D(µ)−1D∂Ω∗ . (2.13)

Note that to calculate the global force FR, one needs to solve the full Dirac equation in every
integration step. It is therefore important to solve the equation efficiently. The deflation acceler-
ated [7, 8], Schwartz-alternating-procedure (SAP, [9]) preconditioned GCR algorithm is applied.
Since the deflation subspace need not be exact, it is constructed by a relaxation process, starting
from a set of random quark fields ψl , which are updated iteratively according to

ψl → “D−1
W “ ψl , (2.14)

until the condition ||DW ψl|| ≤ Mψl is satisfied, where M is in the range of low eigenvalues of
(D†

W DW )1/2, and “D−1
W “ is an iterative procedure that approximates the inverse of DW . In the

current implementation [6], it is done with the SAP. The operator DW is used in the relaxation
procedure, the deflation efficiency for the operator D(µ) is equally good, because the deflation
subspace needs not to be exact and µ normally is small in practice.

The little Dirac operator, i.e. restriction of the Dirac operator D(µ) to the deflation subspace,
is then specified as matrix

Akl(µ) = (ψk,D(µ)ψl) . (2.15)

The Dirac equation D(µ)ψ(x) = η(x) is separated into two equations by acting with projectors
PL(µ) and 1−PL(µ) from the left, where

PL(µ)ψ(x) = ψ(x)−
N

∑
k,l=1

D(µ)ψk(x)A(µ)−1
kl (ψl,ψ). (2.16)

3. Testing

We have tested the reweighting method for two flavors of O(a) improved Wilson fermions on
large lattices (243×48 and 323×64) with fine lattice spacings (respectively 0.07 and 0.08 fm). The
masses of the lightest pseudoscalar mesons in these ensembles are approximately 360 and 300 MeV
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Figure 1: Reweighting factor W on 243×48 lattices for aµ = 0.00569 (left) and 0.003 (right).

respectively. Some details of the simulation, for instance the molecular dynamics trajectory length
τ , step size δτ , the number of configurations (ncfg) of the generated ensemble and acceptance rate
of the HMC simulations are listed in table 1.

The reweighting parameter µ must be chosen with some care. Larger µ accelerates the algo-
rithm but leads to larger fluctuations in the reweighting factor W . We have tested two values of aµ ,
0.00569 and 0.003, on 243×48 lattices. The reweighting factors W are calculated according to Eq.
(1.5). Their Monte-Carlo history is displayed in Fig. 1, after being renormalized so as to have an
average value of one.

For aµ = 0.00569 (left plot), the reweighting factor W fluctuates strongly: about 20% config-
urations receive a weight that is smaller than 0.01. By contrast, for aµ = 0.003 (right plot), the
reweighting factor fluctuates moderately about the mean value. We may use the kurtosis

K =
µ4

σ4 −3 , (3.1)

where µ4 is the fourth central moment and σ is the standard deviation, to quantify the distribution of
the reweighting factor W . For aµ = 0.003, the kurtosis is K '−0.11, showing that the fluctuations
of W is close to normal distribution; while for aµ = 0.00569, kurtosis rises to K ' 12.8. Our choice
of µ on the 323×64 lattice and the corresponding kurtosis is also listed in table 1.

In our simulations, we have tuned the integration step size of molecular trajectories to achieve
an acceptance rate of≈ 80%. For comparison, we have simulated the same set of physical parame-
ters with the standard method (µ = 0), using the same molecular trajectory length. We have tuned
the acceptance rate to be similar, ∼ 80%. In order to do so, the integration step size had to be
roughly 10% smaller. Although both simulations thus ran at similar acceptance rates, we observe
that the molecular dynamics trajectories are more stable when reweighting is used compared with

Volume β a/fm mπ /MeV ncfg τ δτ acc. rate aµ K
243×48 5.3 0.07 360 140 0.5 0.028 0.83 0.003 -0.11
323×64 5.2 0.08 300 120 2 0.013 0.78 0.001 -0.37

Table 1: Parameters of the simulation, as explained in the text. The step size δτ is for updating the global
force FR.
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Figure 2: History of Hamiltonian changes of molecular dynamics trajectories in HMC simulations on 323×
64 lattices. The reweighting method (left) is more stable than the standard method (right).

the standard method. We plot the changes in Hamiltonian ∆H of molecular dynamics for each
trajectory in Fig. 2 for simulations on the 323×64 lattice (reweighting method on the left and stan-
dard method on the right). For the reweighting method, the history of ∆H is fairly stable, while for
the standard method spikes show up more frequently; the highest spikes are up to three orders of
magnitude higher compared to the reweighted algorithm.

Using the reweighting method, we have calculated pion correlators and compared them with
the pion correlators measured on the ensembles generated in the standard way. Practically one
first measures the correlator in the standard way on the ensemble generated with the reweighting
parameter µ; we refer to this correlator as the ‘partially quenched’ one. Then one ‘corrects’ it
configuration by configuration with the reweighting factor (1.5). In Fig. 3, we plot the partially
quenched pion correlator (gray) and the reweighted one (red) and compare them with the pion cor-
relator obtained from the standard simulation (blue). They are compatible within the uncertainties,
and have comparable statistical errors.

4. Conclusion

We have implemented a proposal by Palombi and Lüscher to perform a simulation with a quark
determinant that is protected from the fluctuations of the low-lying modes. We were able to find a
reweighting parameter for which the stability of the DDHMC algorithm is significantly improved,
and at the same time the reweighting factor is under control. As a test observable, we found that the
correlator of the pseudoscalar density is well behaved under the reweighting (1.3). The behavior of
other observables, such as the nucleon correlator, remains to be explored.

In addition to studying the performance of the reweighted algorithm over more than 1000
trajectories, it would be worth trying out other versions of reweighting, where the net benefit in
stability is potentially even larger. Palombi and Lüscher for instance made a proposal in this direc-
tion [3] in which the UV modes are only affected at order µ4.
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Figure 3: Pion correlator on the 323×64 lattice, with and without reweighting.
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