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1. Introduction

Since the early days of Lattice QCD calculations we often find ourselves in a situation when
only a very short period of time is granted before the announcement of a novel architecture and
its deployment in the computing centers across the globe. Commercial compilers often take years
to catch up and the resulting punishment in terms of effectiveness is often a factor of three to ten.
It may even happen that a given arhitecture is cancelled before the very-high-performance library
appears, see e.g. [1]. Since a couple of years a collaboration which aims to improve this situation
this situation has emerged [2]. We plan to do so by producing a tool chain which will give us a
short-cut between high-level mathematical description and the high-performance executable code.
Here we report on the progress in our work.

2. High level description

To start the code generation we need some sort of high-level mathematical language to de-
scribe our Lagrangians and Algorithms. As it is natural for scientists to use Latex for typesetting
formulae, we utilize it as well for the high-level description. With suitable headers such description
may be compiled using any modern Latex system to produce complete visualisation of the scien-
tific foundations for the inversion problem. However Latex as such does not participate in the code
generation, instead a symbolic manipulation (currently implemented in Maude language) is used.
Let us consider an example for a typical Lattice QCD problem. We start with the definitions for
our operator of choice, Twisted Mass Wilson Dirac:

\begin{definition}{Dirac}

\caption{Definition of Dirac matrix on a Lattice $L$,

of gauge matrices and of the preconditioners}

\Constant{$\Dirac, \Pe, \Po, \gamma_5 , \iQ \in M,

\Preconditionera, \Preconditionerb \in M -> M,

\gamma, \sigma ,\ga \in Index -> M, U \in Index -> Index -> M,

\kappa, \mu, \epsilon \in \Complex,

D \in Indexset, dx, dy, dz, dt \in Index$}

Then we declare what is input and what is output:

\Input{$c \in \Complex, d1\in Index, s1\in Index$}

\Var{$s \in Index, d \in Index$}

and the dirac operator can then be expressed as:

\begin{align}

\Dirac &=

\id{L \tensor C \tensor S} \\
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&+ ( (2 * i * \kappa * \mu) * (\id{L} \tensor \id{C} \tensor \gamma_5)

)& + \ssum{d \in D}{(\shift{L}{d} \tensor \id{C \tensor S}) *
\dsum{s\in L}

{ \U(d,s) \tensor (\id{S} + \gamma(d))}}

& + \ssum{d \in D}{(\shift{L}{- d} \tensor \id{C \tensor S}) *
\dsum{s\in L}

{ \U(- d,s) \tensor (\id{S} - \gamma(d))}} \;\\

Finally, we specify the even-odd preconditioner:

\Pe &= \pr{even}{L} \tensor \id{C \tensor S} \;\\

\Po &= \pr{!even}{L} \tensor \id{C \tensor S}\;

\end{align}

Once compiled, it of course looks much more readable:

The variables we listed are not independent and some are linked while some, like gamma ma-
trices, are almost fixed. So we will represent such constraints via following relation and identities:

\begin{align}

\U(- d1,s1) &= \U(d1,s1 - d1)^\dagger \; \\

\Preconditionera{Dirac} & = Pe \; \\

\Preconditionerb{Dirac} & = Po \; \\

\gamma( d1)^\dagger & = - \gamma(d1) \; \\

\sigma(- d1) & = - \sigma(d1) \; \\

\ga(d1) & = i * \gamma_5 * \gamma(d1) \; \\

\isInvertible{\id{S} + c * \gamma_5} & = true \; \\
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\isInvertible{\id{S} - c * \gamma_5} & = true \; \\

\type{\gamma(d1)} & = \matrixtype{S}{S} \; \\

\type{\sigma(d1)} & = \matrixtype{HalfS}{HalfS} \; \\

\type{\U(d1,s1)} & = \matrixtype{C}{C} \; \\

\type{\gamma_5} & = \matrixtype{S}{S} \; \\

\gamma_5^\dagger & = \gamma_5 \; \\

D &= \{ dx, dy, dz, dt\} \; \\

Or, in human language, it will look like this:

The following template is one example of the iterative methods that can be applied to solve
our problem. Conjugate gradient is one of the most used methods, due to its effectiveness and
universality.

\begin{template}{CG}

\Input{$A\in M , b \in V$}

\Output{$x \in V$}

\Match{$x = A^{-1} * b \;$}

\Require{$A^\dagger = A $}

\Var{$r, r_1, Ap,p \in V , \alpha, \beta, n_r, n_{r1}\in \Complex$}

$r = b$ \;

$p = r$ \;

$n_r = (r \hdp r)$ \;

\While{$(n_r > \epsilon$)}{
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$Ap = A * p$ \;

$n_r = (r \hdp r)$ \;

$\alpha = n_r / (p \hdp Ap)$ \;

$x = x + \alpha * p$ \;

$r = r - \alpha * Ap$ \;

$n_{r1} = (r \hdp r)$ \;

$\beta = n_{r1} / n_r$ \;

$p = r + \beta * p$ \;

$n_r = n_{r1}$ \;

}

\caption{Conjugate Gradient [CG]}

\end{template}

Such code will be directly compiled by Latex into:

We can typset any sufficiently simple algorithm, e.g. GCR, NRGCR etc in this manner and it
will likely result in the converging code. For more complicated algorithms, like deflation, or any
general Schur compliment method, the work is in progress.
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3. Pseudocode generation

Once we decided on the algorithm and lagrangian, we can do the first step, the generation of
the pesudocode. This can be done in two distinct manners, the microscopic and the macroscopic.
The former is intended, primarily, for the validation of the algorithm although it may also be used
for the initial study. Here is how is usually looks like, a snippet from the Conjugate Gradient
implementation.

for(j in {j | j < nrestart and nr > epsilon})

{

alpha = (Mp[j][L].Mp[j][L]) ^-1 * (r[L].Mp[j][L]);

forall(x = 0 ; x < N ; x+=1)

forall(y = 0 ; y < N ; y+=1)

forall(z = 0 ; z < N ; z+=1)

forall(t = 0 ; t < N ; t+=1)

{

xx[x][y][z][t] = alpha*P[j][x][y][z][t]+xx[x][y][z][t];

r[x][y][z][t] = r[x][y][z][t]-alpha*Mp[j][x][y][z][t];

Mr[j+1] = (id(C) x (id(S)+ i*mu*kappa*2*gamma5)

+ sum(d in {dx,dy,dz,dt})(U(d, s-d-d)^* x (-gamma(d) + id(S)))

+ sum(d in {dx,dy,dz,dt})(U(d, d+s) x (id(S) + gamma(d))))

* r[x][y][z][t] ;}

for(i in 0 .. j)

{

delta[i] = -((Mp[i][L].Mp[i][L])^-1 * (Mr[j + 1][L].Mp[i][L]));

}

From here another code generation system, which we call Lion, is used to produce executable C
code, adding proper headers and declarations. This has been completed and verified.

The second option, the macroscopic way, is rather intended for the high-performance im-
plementation. The pseudocode looks similar, but without loops, for an easy mapping to the pre-
optimised library functions. The resulting performance will depend on two things, the effectiveness
of the hopping matrix multiplication and the speed of the underlying linear algebra library. This
part of the projet is under heavy development.

References

[1] An efficient CELL library for Lattice Quantum Chromodynamics., Claude Tadonki, Gilbert
Grosdidier, Olivier Pene, International Workshop on Highly Efficient Accelerators and
Reconfigurable Technologies (HEART) , Tsukuba, Japan, June 1-4, 2010

[2] Towards the Petaflop for Lattice QCD Simulations: the PetaQCD Project, Jean-Christian Anglès
d’Auriac et al., 2010 J. Phys.: Conf. Ser. 219 052021

[3] Maude, http://maude.cs.uiuc.edu/

6


