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Computer simulations in QCD are based on the discretization of the theory on a Euclidean lattice.
To compute the mean value of an observable, usually the Hybrid Monte Carlo method is applied.
Here equations of motion, derived from an Hamiltonian, have to be solved numerically. Com-
monly the Leapfrog (Stoermer-Verlet) method or splitting methods with multiple timescales à la
Sexton-Weingarten are used to integrate the dynamical system, defined on a Lie group.
Here we formulate time-reversible higher order integrators based on implicit partitioned Runge-
Kutta schemes and show that they allow for larger step-sizes than the Leapfrog method. Since
these methods are based on an infinite series of exponential functions, we concentrate on the
truncation of this series with respect to the global error and accuracy. Finally, we see that the
global error of a SPRK scheme is always even such that a convergence order of one is gained for
methods with odd convergence order.
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1. Introduction and Motivation

In the molecular dynamics step of the Hybrid Monte Carlo method [1], Hamiltonian equa-
tions of motions have to be solved. These equations form coupled systems of matrix differential
equations of the form

U̇ν =
∂H ([U ], [A])

∂Aν

= Aν ·Uν , (1.1a)

Ȧν =−∂H ([U ], [A])
∂Uν

= g(Uν), for ν = 1, . . . ,n. (1.1b)

In this notation, Uν is an element of a matrix Lie group G and Aν an element of its associated Lie
algebra g. Thus, [U ] can be imagined as a vector of n matrix Lie group elements U1,U2, . . . ,Un, and
[A] as a vector of n Lie algebra elements A1,A2, . . . ,An. In pure lattice gauge theory, the element
Uν can be seen as the link Ux,µ between the lattice sites x and x+ aµ̂ . Thus, Aµ is its associated
momentum Px,µ times the complex i. In this context, the vectors of matrices [U ] and [A] are the
whole configurations of the links and its momenta.
The equations of motion have to be solved in a Lie group, respectively in a Lie algebra with a time-
reversible and area-preserving scheme. In a recent paper [2], we have investigated the potentialities
of higher order partitioned Runge-Kutta schemes for solving the equations of motions such that the
desired properties are met. We found out that symmetric partitioned Runge-Kutta methods based
on the Magnus and Munthe-Kaas approach can be time-reversible. So far, area-preservation is not
fulfilled and must be corrected in the acceptance step. Furthermore, the global error of this scheme
is always even and investigated in detail in this paper. In doing so, we start with a short derivation
of symmetric partitioned Runge-Kutta schemes based on the ideas of Magnus and Munthe-Kaas.
Afterwards, we focus on the global error and accuracy of the method and show some numerical
results.

2. Numerical Integration

The differential equations (1.1) become an initial value problem (IVP) by prescribed initial
values: Uν(0) := Uν ,0 and Aν(0) := Aν ,0 for ν = 1, . . . ,n. Thereby, the initial values Uν(0) have
to be in the Lie group and the elements Aν(0) in the Lie algebra. Considering the structure of
equation (1.1), (1.1a) is a differential equation in a Lie group such that it has to be solved with a
numerical scheme that guarantees a solution in the Lie group as described in paragraph 2.1 For the
second equation (1.1b), no special treatment has to be applied. It is an equation in the Lie algebra
g, which is a linear space. Thus, this equation can be solved with any time-reversible and area-
preserving numerical scheme. For convenience, we leave out the index ν from now on. This means
we investigate just one coupled differential equation for a special but arbitrary index ν : U̇ = A ·U
and Ȧ = g(U). The results can then be extended straightforward to the whole vectors [U ] and [A].

2.1 Differential Equations in Lie Groups
Concerning equation (1.1a), we follow the ideas of Magnus and Munthe-Kaas. Magnus [3]

stated that the differential equation (1.1a) in the Lie group can be replaced through a differential
equation in the Lie algebra. This new differential equation can be solved directly due to the linearity
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of the Lie algebra. The strategy is as follows: Identify U(t) with exp(Ω(t)) such that the variable
changes from U to Ω. Ω is the solution of the differential equation

Ω̇ = d exp−1
Ω
(A), (2.1)

with Ω(t) ∈ g and initial value Ω(0) := 0. The derivative of the inverse exponential map (2.1) is
given by an infinite series as

d exp−1
Ω

(A) = ∑
k≥0

Bk

k!
adk

Ω (A) .

In this series, the variables Bk are the k-th Bernoulli numbers and the adjoint operator adk
Ω

is a
mapping in the Lie algebra g given by adΩ(A) := [Ω,A] = ΩA−AΩ. It follows the conventions
ad0

Ω
(A) = A and adk

Ω
(A) = [Ω,adk−1

Ω
(A)]. This means, Ω is the solution of the differential equation

Ω̇ = ∑
k≥0

Bk

k!
adk

Ω (A) .

Knowing Ω, the solution U of (1.1a) can be attained via U = exp(Ω)U0. In total, we record that
the initial value problem (1.1) is equivalent to

Ω̇ =
∞

∑
k=0

Bk

k!
adk

Ω(A), Ȧ = g(U) with U = exp(Ω)U0 (2.2)

and U(0) := U0 ∈ G, A(0) := A0 ∈ g and Ω(0) := 0 ∈ g. This transformed problem can now be
solved directly by a Runge-Kutta method without destroying the Lie group structure: As the Lie
algebra g is a vector space, the analytic solution (Ω(t),A(t)) as well as its approximation (Ω1,A1)

attained by a numerical integration scheme both are elements of the Lie algebra g. Furthermore, as
for any a ∈ g the matrix exponential exp(a) is in the associated matrix Lie group G, also U is in G.

2.2 Symmetric Partitioned Runge-Kutta schemes
The problem in solving (2.2) is that Ω̇ is given as infinite series which has to be suitably

truncated after q+ 1 terms. This means, the truncation index q of Ω̇ has to be chosen properly
such that a numerical integration scheme meets a prescribed convergence order p. Thereby, the
convergence order of a numerical integration method is p if the deviation between the exact solution
and its numerical approximation after one step is of order p+1 in a suitable norm. Here, the idea
of Munthe-Kaas comes into play. He states in [4] that the truncation index q of Ω̇ has to be chosen
as a value larger than the desired convergence order p minus one. Consequently, for a Runge-Kutta
scheme of convergence order p, Ω̇ is set as a function depending on the truncation q≥ p−2 of the
aforementioned infinite series, i. e.

Ω̇ =
q

∑
k=0

Bk

k!
adk

Ω (A) =: fq(Ω,A). (2.3)

All in all, the exact solution of (2.2) is approximated through an integration scheme of order p of
the truncated model

˙̂
Ω =

q=p−2

∑
k=0

Bk

k!
adk

Ω̂
(Â), ˙̂A = g(Û) with Û = exp(Ω̂)Û0, (2.4)
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Û(0) := U0 ∈ G, Â(0) := A0 ∈ g and Ω̂(0) := 0 ∈ g. Thereby, this model can be solved with
higher order time-reversible symmetric partitioned Runge-Kutta (SPRK) schemes derived in [2] as
follows: Compute the approximations

Ω1 = h
s

∑
i=1

biKi, A1 = A0 +h
s

∑
i=1

b̂iLi, (2.5)

with increments Ki = fq(Ω̄i, Āi) and Li = g(Ūi) for i = 1, . . . ,s. In the course of this, the internal
stages are defined as

Ω̄i = h
s

∑
j=1

αi jK j, Āi = A0 +h
s

∑
j=1

α̂i jL j, Ūi = exp(X̄i)exp
(1

2 Ω1
)

U0, X̄i = h
s

∑
j=1

γi jK j.

At the end, the solution U1 is attained via U1 = exp(Ω1)U0. In this scheme, the coefficients
bi, b̂i,αi j, α̂i j and γi j for i, j = 1, . . . ,s can be determined to guarantee time-reversibility (and sym-
metry). Their values for convergence order p = 3 can be found in [2].

3. Global Error and Accuracy of the SPRK Method

For the local error, the solution of the integration method after one step has to be compared
with the exact solution U(t0 + h),A(t0 + h) of the differential equations (1.1). The SPRK method
(2.5) is of convergence order p if

‖U(t0 +h)−U1‖= O(hp+1) and ‖A(t0 +h)−A1‖= O(hp+1) (3.1)

holds. Since the approximation to U1 is computed from evaluating the matrix exponential (we
assume here that we can evaluate this exactly), which is Lipschitz on every closed interval, it
suffices to demand

‖Ω(t0 +h)−Ω1‖= O(hp+1) and ‖A(t0 +h)−A1‖= O(hp+1)

with exact solution Ω(t0 + h),A(t0 + h). According to Munthe-Kaas, the approximations Ω1 and
A1 of the exact solution of the suitably truncated problem (2.4) can also be interpreted as approxi-
mations to the original problem (2.2). With the same argument, we can even formulate a stronger
statement on the local accuracy (3.1). As the method is symmetric, theorem 3.2 in [6, II.3] applies,
which states that the maximal convergence order p of a symmetric method is even, which means
that the local error is always odd. Hence, the SPRK method developed as a method of an odd con-
vergence order p is of order p+1. The global error of a numerical integrated scheme is computed
as the sum of the local errors. This means, for the computation of a trajectory with length τ , an
integration method with fixed step size h is applied N = τ/h times. Hence, the global error is of the
order local error minus one. Thus, the SPRK method of convergence order p has at least a global
error of order p. Again, in case of an odd p, the global error is of order p+1.
The accuracy depends on the truncation k = q = p− 2 of the series given in (2.2) with p being
the convergence order of the Runge-Kutta method that is used to solve the problem numerically.
We recall the basic steps of the proof given in [6] for a deeper understanding of the choice of the
truncation parameter q. For this purpose, we restrict to an uncoupled Lie algebra problem

Ω̇ = F∞(Ω) :=
∞

∑
k=0

Bk

k!
adk

Ω(A), with Ω(0) = 0 ∈ g, (3.2)

4



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
0
4
9

Accuracy of Symmetric Partitioned Runge-Kutta Methods Michael Striebel

which arises from the Magnus approach mentioned in paragraph 2.1. The truncation of the series
in (3.2) at k = q yields the truncated problem

˙̂
Ω = Fq(Ω̂), with Ω̂(0) = 0, (3.3)

such that

F∞(Ω(t))−Fq(Ω(t)) =
∞

∑
k=q+1

Bk

k!
adk

Ω(t)(A).

For sufficiently smooth A we recognize

adk
Ω(t)(A) = O(tk+1),

which is due to the nested structure of the ad-Operator [6]. Hence, we have

Fq(Ω̂(t)) = F∞(Ω̂(t))+C(t)

with C(t) = c1tq+2 + c2tq+3 + · · · and constant values c1,c2, . . . ∈ g. For fixed h > 0 and t ∈ [0,h]
the exact solutions Ω(t) of (3.2) and Ω̂(t) of (3.3) satisfy

‖Ω(t)− Ω̂(t)‖= ‖Ω(0)+
∫ t

0
F∞(Ω(τ))dτ−

(
Ω̂(0)+

∫ t

0
Fq(Ω̂(τ))dτ

)
‖

=

∥∥∥∥∫ t

0
F∞(Ω(τ))dτ−

(∫ t

0
F∞(Ω̂(τ))+C(τ)dτ

)∥∥∥∥
≤
∫ t

0
‖F∞(Ω(τ))−F∞(Ω̂(τ))‖dτ +

∫ t

0
‖C(τ)‖dτ.

(3.4)

The function F∞ is Lipschitz continuous on every closed interval for sufficiently smooth A. We
assume that for an interval where both Ω(t) and Ω̂(t) reside in for t ∈ [0,h], the Lipschitz constant
is L∞ ∈ R, i. e.,

‖F∞(Ω(t))−F∞(Ω̂(t))‖ ≤ L∞‖Ω(t)− Ω̂(t)‖.

Furthermore, for t ∈ [0,h] we see that

‖C(t)‖ ≤ ‖c1‖hq+2 +‖c2‖hq+3 + . . . := c̄(h) ∈ R. (3.5)

Hence from (3.4) it follows that

‖Ω(t)− Ω̂(t)‖ ≤ c̄(h) · t +L∞

∫ t

0
‖Ω(τ)− Ω̂(τ)‖dτ,

such that the requirements of the "Gronwall lemma" [5] are satisfied by which

‖Ω(t)− Ω̂(t)‖ ≤ c̄(h)
L∞

(
eL∞h−1

)
=

1
L∞

(
‖c1‖hq+2 +‖c2‖hq+3 + · · ·

)
·
((

1+L∞h+
1
2!
(L∞h)2 + · · ·

)
−1
)

=
(
‖c1‖hq+2 +‖c2‖hq+3 + · · ·

)
·
(

h+
1
2

L∞h2 +
1
3!

L2
∞h3 + · · ·

)
.
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Thus, the difference between the exact solutions of the full problem (3.2) and the truncated problem
(3.3) is

‖Ω(h)− Ω̂(h)‖= O(hq+3) (3.6)

after one time step h. Applying a one step method of convergence order p on the truncated problem
(3.3) means to calculate an approximation Ω̂1 to the exact value Ω̂(h) such that

‖Ω̂(h)− Ω̂1‖= O(hp+1). (3.7)

Finally, we interpret Ω̂1 as an approximation to the exact solution of the original problem (3.2).
The quality of this approximation is determined by the deviation (3.6) introduced by the modeling
and the discretization error (3.7):

‖Ω(h)− Ω̂1‖ ≤ ‖Ω(h)− Ω̂(h)‖+‖Ω̂(h)− Ω̂1‖= O(hq+3)+O(hp+1).

This clearly indicates that Ω̂1 is a numerical approximation to Ω(h) of convergence order p, i. e.,

‖Ω(h)− Ω̂1‖= O(hp+1) if q+3≥ p+1, i. e., q≥ p−2.

4. Numerical Tests

We consider a pure lattice gauge theory in SU(2,C) with Wilson action and compare the SPRK
method described in (2.5) with the Leapfrog method. For this purpose, we investigate a symmetric
partitioned Runge-Kutta scheme of convergence order p = 4 which contains the truncated function
Ω̇ = fq(Ω,A) given in (2.3). Because of the symmetry, the method has an even convergence order
such that the choice p = 3,q = 1 already leads to a local error of order 5. This means, we use the
equation

Ω̇ = f1(Ω,A) = A− 1
2
[Ω,A] (4.1)

according to (2.3) and perform simulations on a 2-dimensional lattice with lattice size L = T = 32.
There are 2 results shown in figure 1: On the left side, the convergence order of the different
methods can be seen. For this purpose, we consider the energy change ∆H of two successive con-
figurations after a whole trajectory of length 1 and take the mean of 5000 configurations. The
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Figure 1: Left: Convergence order. Right: Area-preservation.
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statistical errors are so small that they are not visible in the plot. Since the energy change ∆H de-
viates from zero just because of the numerical errors of the integration scheme, the violation of the
energy preservation gives the global error. We see that for a given |∆H| the SPRK allows for larger
step sizes. On the right side of figure 1, we see the violation of the area-preservation in dependence
of the step sizes chosen in the numerical methods. Area-preservation (up to roundoff errors) is
given if the determinant of ∂ (Ω1,A1)/∂ (Ω0,A0) has exactly the value 1. Here, the determinant is
numerically approximated by first order difference quotients.

5. Conclusion

We investigated the accuracy of the time-reversible symmetric partitioned Runge-Kutta scheme
(2.5). The order of accuracy consists of two components: On the one hand, the convergence order
depends of course on the order p of the method itself. As the method is symmetric, the local error
is always odd, i. e., the scheme has a local error of order p+1 for an even convergence order p. On
the other hand, the SPRK scheme contains one truncated series (2.3). The truncation index q has
to be larger than or equal to p− 2 to meet the prescribed convergence order. All in all, choosing
an SPRK method with an even local error should be preferred since a convergence order of one is
gained by the symmetry. We performed simulations for an SPRK scheme of convergence order 4
and see that the global error given in the numerical results has order 4 as theoretically expected.
In the development of the SPRK method, area-preservation has not been considered. Thus, it is
not surprising, that area-preservation is not met applying this scheme. This property has to be
investigated in future work.
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