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acceleration of expression evaluation on NVIDIA GPUs. Single expressions are off-loaded to
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and using Just-in-Time compilation techniques. Memory management is automated by a soft-
ware implementation of a cache controlling the GPU’s memory. Interoperability with existing
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accelerated which can reduce the effects otherwise suffered from Amdahl’s Law.

The XXIX International Symposium on Lattice Field Theory, Lattice 2011
July 10-16, 2011
Squaw Valley, Lake Tahoe, California

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

ar
X

iv
:1

11
1.

55
96

v1
  [

he
p-

la
t]

  2
3 

N
ov

 2
01

1



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
0
5
0

Accelerating QDP++/Chroma on GPUs Frank Winter

1. Introduction

Graphic Processing Units (GPUs) are getting increasingly important as target architectures in
scientific High Performance Computing (HPC). The massively parallel architecture for floating-
point arithmetic together with a very high bandwidth to device-local memory make GPUs interest-
ing not only for compute-intensive but also for data-intensive applications.

NVIDIA established the Compute Unified Device Architecture (CUDA) as a parallel comput-
ing architecture controlling and making use of the compute power of their GPUs. Now in its 4th
major software iteration mature support of most of the C++ language features (like templates) is
provided making it an interesting platform also for software projects employing meta-programming
techniques.

Within the U.S. SciDAC initiative a unified programming environment was developed – the
QCD Application Programming Interface (API) [1]. This API enables lattice QCD scientists to
implement portable software achieving a high level of software sustainability. Part of this API is
QDP++, the C++ implementation of the QCD Data Parallel Interface, which provides data parallel
types and expressions suitable for lattice field theory. The very successful lattice QCD software
suite Chroma builds on top of QDP++ where implementations for a large range of hardware archi-
tectures exist [2]. High efficiency is provided through a flexible interface that permits specialised
compute kernels to be applied [3]. QDP++ makes substantial use of template meta-programming
techniques to provide Domain Specific Language (DSL) abstractions for this problem domain.
Through usage of the Portable Expression Templates Engine (PETE) QDP++ provides user ex-
pressions that look similar to their mathematical counterparts.

PETE is a portable implementation of the Expression Template (ET) technique [4, 5] – a tech-
nique that can be used to implement vector expressions without relying on vector sized temporaries.
PETE’s portability concepts include abstractions for a flexible return type system and user defined
expression tree traversals. However, PETE and so QDP++ do not support heterogeneous multicore
architectures with separate memory and execution domains.

This work extends QDP++/Chroma to make use of NVIDIA’s CUDA as the target architecture
for expression evaluation. A single expression is off-loaded to the device memory and execution
domain by dynamically generating a CUDA kernel and using Just-in-Time (JIT) compilation tech-
niques. Special attention is paid on ’Chroma readiness’ meaning that a successful build of Chroma
on top of the extended QDP++ is possible.

2. Related Work

Efforts similar to this work are undergone at Jefferson Lab [6]. This underlines the necessity
of this approach.

A similar ET reconstruction on GPUs using CUDA was previously reported [7]. Pointers to
the vector’s data are passed to the CUDA kernel as function arguments and the NIVIDA compiler
called just-in-time. Memory management was not addressed and circumvented by using the Thrust
library featured by CUDA.

In previous work QDP++/Chroma was extended in a similar way targeted to a different het-
erogeneous multicore architecture, the Cell processor and QPACE [8, 9].

2



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
0
5
0

Accelerating QDP++/Chroma on GPUs Frank Winter

0 50 100 150 200 250 300 350
S

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

S
to

ta
l

P=0.8

Figure 1: Amdahl’s Law: Total speedup factor against speed up factor for program fraction P= 0.8.

3. Lattice QCD, GPUs and Amdahl’s Law

Lattice QCD calculations divide into two parts, the generation of background field config-
urations and the computation of observables on these configurations, the so-called analysis part.
The computationally most intensive part of the analysis part is the inversion of the fermion matrix.
Although heavily dependent on the simulation parameters the vast majority of the total amount
of floating-point operations carried out during the analysis is spent for inverting the large sparse
fermion matrix. The rest of the floating-point operations are spent on non-kernel routines like
smearing, quark contractions, etc.

It is natural to spend most optimisation work on the inverter part. A highly optimised library
(QUDA) for the fermion matrix inversion for NVIDIA GPUs is available [10 – 12]. These inverters
provide speedup factors of over S≥ 30 compared to an inversion carried out on the CPU, see a later
section for benchmark results.

However, Amdahl’s law states that a program fraction P subject to acceleration with the ac-
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Figure 2: Software cache controlling the device memory pool and QUDA integration.
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Figure 3: JIT control flow. The tree parser generates at runtime GPU code and a list of lattice
objects. The cache is queried for availability of all objects on the device. JIT compilation and
device execution is triggered accordingly or alternatively host execution.

cording program part sped up by a factor S gains a total speedup factor of

Stotal =
1

(1−P)+ P
S

. (3.1)

For a very high speedup factor S→ ∞ the total speedup factor is limited by the fraction Stotal =

1/1−P. Fig. 1 shows Stotal over S for P = 0.8. To further increase Stotal one needs to increase P.

4. QDP++ Extensions for GPUs

To further increase P in case of Chroma one can either implement more hand-tuned versions
of non-kernel routines or target on the underlying library QDP++. Targeting on QDP++ by adding
design extensions for GPU support is advantageous since this approach results in a more general
solution. General in the sense that the user is not restricted to specific non-kernel routines.

4.1 Memory Management

The bandwidth between host and device memory domain represents a major bottleneck. Since
lattice objects are typically more often referenced than just once in a particular set of expressions
minimising these transfers can be accomplished by an implementation of a software cache con-
trolling the memory domain affiliation of individual lattice objects. Provided with enough device
memory re-referencing lattice objects does not trigger transferring them again.
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(b) Tesla C2070, lattice size 243 × 48, κ = 0.13632, β =

5.29, (SP): Left bar: MI(GPU), SRC,SNK,HAD(CPU)
Right bar: MI,SRC,SNK,HAD(GPU).

Figure 4: Comparison of wall-clock execution times of Chroma reference runs. Source smearing
(SRC), Matrix inversion (MI), Sink smearing (SNK), Hadron spectrum (HAD).

Fig. 2 shows the functional principle. A pool manager allocates at program startup time a large
portion of the GPU memory and delegates control to the cache. Upon dynamic memory allocation
the caching algorithm spills if necessary the least recently used (LRU) object(s). This automates
the memory management and application codes, e.g. Chroma, build without changes to the code.

4.2 Just-in-Time Compilation

The expressions are not known at library development time. A dynamic code generator is
implemented using PETE’s user defined expression tree traversals (tree parser). Specialised leaf
functors generate GPU code for references to lattice objects and collect memory addresses of in-
volved lattice objects populating the parser list. Specialised actions for tree nodes then rebuild the
operations and the structure of the expression.

Fig. 3 shows the JIT compilation control flow. Upon expression evaluation the tree parser
generates GPU code for the expression and the parser list containing lattice objects. The cache
is queried for availability of the lattice objects on the device. In case all objects are cached, i.e.
available on the device, the availability of the CUDA kernel is queried via the dynamic linking
loader. If no CUDA kernel for the expression can be found JIT compilation is triggered using
NVIDIA’s FrontEnd++ and the resulting kernel is dynamically loaded. Then device execution is
started.

4.3 QUDA Integration

Special emphasis is put on the interoperability of the memory management via the LRU cache
and QUDA. QUDA makes use of CUDA’s API to allocate device memory. Call wrappers are in
place that redirect memory allocation calls to the device memory pool manager controlled by the
LRU cache. Fig. 2 shows the interoperability of QUDA with the device memory pool. QUDA
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memory allocation might first trigger cache spills, then memory allocation takes place via the pool
manager. This permits QUDA and QDP++ sharing the same device memory pool and thus avoids
the necessity to temporarily suspend QDP++ operation on the device during propagator calculation.
As a side effect this speeds up the propagator calculation since residual calculation and solution
reconstruction are implemented using QDP++.

5. Benchmark Results

Chroma was used for the benchmark measurements. Three configurations were used:

• QDP++ CPU, no QUDA

• QDP++ CPU, with QUDA

• QDP++ GPU, with QUDA

For each of these configurations the same set of calculations was carried out: Source creation,
smearing, Propagator calculation (Wilson-Clover), sink smearing and hadron spectrum (mesonic
and baryonic). Each of the individual calculation was timed separately.

Fig. 4 shows the comparison for the different configurations. Shown are the individual execu-
tion times (wall-clock) for the different Chroma measurements.

Fig. 4a refers to benchmark runs carried out on a NVIDIA GeForce GTX 480 (1.5GB device
memory, consumer product). The left most bar represents the configurations with all calculations
carried out on the CPU (Intel Xeon CPU, 4 cores, 2.27GHz). This result is to be compared to the
middle bar showing the execution time of the configuration with QUDA, i.e. the matrix inversion
uses the GPU and all remaining calculations carried out on the CPU. Even the speedup factor for
the matrix inversion is about S≈ 30 an overall speedup factor of only roughly Stotal ≈ 2 is measured
– non-kernel routines (smearing and hadron spectrum) start to dominate the total execution time.
Note, however, that a rather large quark mass was chosen. The right bar shows the execution
time when using the QDP++ with GPU evaluation. The remaining parts are accelerated and the
execution time is significantly reduced. Also the propagator part achieved an additional speedup
since residual calculation and solution reconstruction is implemented using QDP++. This leads to
an overall speedup factor of more than Stotal ≥ 10.

Fig. 4b shows the benchmark results carried out on a NVIDIA Tesla C2070 (6GB device
memory). In this run the quark mass was chosen to be smaller and the lattice size to be larger. The
Chroma configuration with all parts carried out on the CPU was not measured. The left bar shows
the execution time of using QUDA plus the remainder executed on the CPU. The right bar shows
the according time for all parts executed on the GPU. Again non-kernel routines show a significant
speedup factor.

6. Conclusion and Outlook

Acceleration of QDP++ expression evaluation was achieved using a single GPU. The results
look encouraging to further advance this work. For now device memory accesses are not coalesced
resulting in a bandwidth usage of only≈ 15−25 GB/s (9−15% peak) on the benchmarked devices.
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Initial testing with coalesced memory accesses achieved a much higher sustained bandwidth equiv-
alent to a factor ≈ 6− 10 higher. A single GPU is supported for now. Parallelisation to multiple
GPUs per host and multiple hosts forms part of future work.

7. Code Availability

This QDP++ implementation with extensions for GPU evaluation is available at:
https://github.com/fwinter/qdp

A modified QUDA including call wrappers to QDP++ memory management is available at:
https://github.com/fwinter/quda
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