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We show a spontaneous breaking of the chiral symmetry and its restoration in monolayer

graphene, by considering the system as a strongly coupled gauge theory. The chiral (sublattice)

symmetry of monolayer graphene, which is spontaneously broken in the strong coupling limit of

the Coulomb interaction, can be restored by introducing the Kekulé-patterned lattice distortion

externally. We investigate such a behavior of the system analytically, by using the techniques of

strong coupling expansion on the lattice gauge theory model, which preserves the original honey-

comb lattice structure. We discuss the relation between the chiral phase transition and the spectral

gap amplitude, and show the modification of the dispersion relation of the electrons/holes from

that of non-interacting fermions.
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1. Introduction

Graphene, a monoatomic layer material of carbon atoms, is one of the most intensely studied
material both theoretically and experimentally, since its first experimental isolation in 2004 [1].
Due to the so-called “Dirac cone” structure of the dispersion relation of electrons and holes around
half filling in the momentum space [2], monolayer graphene provides a physical realization of the
(2+1)-dimensional massless Dirac fermion system [3], which attracts the field of particle physics as
well. The electromagnetic field, on the other hand, still propagates in the (3+1)-dimensional space,
so that the whole system can be effectively described by the “reduced quantum electrodynamics
(QED)” [4].

The electron-electron interaction is supposed to play an important role in the monolayer
graphene, since it remains unscreened around half filling and its effective strength is largely en-
hanced due to the discrepancy of the speed of light and the speed (Fermi velocity) of electrons and
holes, if the system is suspended in vacuum. In reduced QED, such a strong Coulomb interaction
can cause a spontaneous breaking of chiral symmetry, leading to the dynamical mass generation of
the fermions. In graphene, the chiral symmetry of fermions corresponds to the inversion symmetry
between two triangular sublattices of the honeycomb lattice. Since the above mechanism of gap
generation is analogous to the dynamical quark mass generation mechanism in quantum chromo-
dynamics (QCD), there have been several studies on the electron-electron interaction in graphene
by employing the techniques in common with the analysis of QCD [5, 6].

There is another way to open a spectral gap in graphene without breaking the “chiral symme-
try”. The “Kekulé distortion” [7], which is characterized by the alternating bond strength in the
honeycomb lattice and is suggested to be introduced externally by the adatoms on the layer [8],
opens a finite spectral gap proportional of the amplitude of the distortion. There have been few
studies that consider both the spontaneous chiral symmetry breaking and the Kekulé distortion,
and their interplay at long wavelength, i.e. in the mean field, has not yet been understood in the
previous works.

In this work, we consider the monolayer graphene system under an external Kekulé distortion,
and propose a chiral symmetry restoration mechanism induced by the lattice distortion. In order
to consider the lattice distortion effect, we employ the effective model of the U(1) gauge theory,
with the original honeycomb lattice structure. We consider the behavior of the system around the
strong coupling limit of the Coulomb interaction by the technique of strong coupling expansion
of lattice gauge theory, which is also employed in the QCD analysis, and observe the behavior
of the spontaneous chiral symmetry breaking by varying the amplitude of the Kekulé distortion.
Finally, we show that the chiral symmetry is completely restored under a sufficiently large distortion
amplitude, even in the strong coupling limit of the Coulomb interaction. The total magnitude of
the spectral gap is calculated as a function of the Kekulé distortion amplitude.

2. Lattice effective model

In order to construct the model action of the system with the original honeycomb lattice struc-
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ture, we start from the conventional tight-binding Hamiltonian,

H =− ∑
r∈A

∑
i=1,2,3

[
ha†(r)b(r +si)+H.c.

]
. (2.1)

which describes the hopping of an electron with amplitudeh between two nearest neighboring
sites. Herea(a†) and b(b†) are the annihilation (creation) operators of electrons on the lattice
cites in A and B sublattices respectively, andsi=1,2,3 are the hopping directions, with the lattice
spacinga = |si | = 1.42Å. By diagonalizing this Hamiltonian in the momentum space, its energy
eigenvalue shows the Dirac cone structureE(K±+k) = h|Φ(K±+k)|= vF |k|+O(k2) around two
Dirac pointsK±, whereΦ(k) ≡ ∑i=1,2,3eik·si . The Fermi velocityvF = (3/2)ah= 3.02×10−3 is
considerably smaller than the speed of light. This Hamiltonian possesses an inversion symmetry
between two sublattices A and B, which can be extended to the continuous U(1)A symmetry in the
low-energy region.

The external Kekulé distortion is described by the additional hopping amplitudeδh with a
spatial modulation,

δhi(r) =
∆
3

[
ei(K+·si+G·r)+c.c.

]
, (2.2)

where∆ is the amplitude of the distortion, andG≡K+−K−. The Kekulé distortion does not break
the sublattice symmetry, but it opens a spectral gap,E(K±+ k) ≃ vF

√
|k|2+∆2. In the presence

of the Kekulé distortion, the translational symmetry by the sublattice spacing gets partially broken,
so that the Brillouin zoneΩ is split into three parts (see Fig.1).

Figure 1: A schematic picture of the Brillouin zone corresponding to the honeycomb lattice. The Brillouin
zoneΩ (gray rhombic region) is spanned by the reciprocal lattice vectorsK1 andK2. If the Kekulé distortion
pattern [Eq.(2.2)] is introduced,Ω is split into three hexagonal cells:Ω̃ andΩ̃±, surroundingk = 0 andK±
(Dirac points) respectively.

From the Hamiltonian in Eq.(2.1), the effective action for fermionsSF is derived with the
imaginary time (τ) formulation. Here we perform the temporal scale transformationτ → τ ′/vF ,
so that the Fermi velocity can be rescaled to be unity. The temporal direction is discretized with
the lattice spacingaτ ′(= vF aτ) equal to the spatial lattice spacinga. This discretization generates a
pair of fermion doublers, which we consider here as the spin (up/down) degrees of freedom.
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In this lattice model, the effect of the electromagnetic field is implemented by U(1) link vari-
ables between spatially or temporally neighboring sites. Due to the temporal scale transformation,
the electromagnetic field becomes strongly coupled by the factorv−1

F
in the temporal direction,

while weakly coupled by the factorvF in the spatial direction. Therefore, by the saddle point
approximation, we can set the spatial link variables to unity. This simplification means that the
retardation (magnetic) effect of the electromagnetic field can be neglected due to the discrepancy
between the Fermi velocity and the speed of light, which is referred to as “instantaneous approxi-
mation.” With this approximation, the effective action of the system can be constructed:

SF =
1
2 ∑

r∈A;τ ′

[
a†(x)Uτ ′(x)a(x+aτ ′)−H.c.

]
+

1
2 ∑

r∈B;τ ′

[
b†(x)Uτ ′(x)b(x+aτ ′)−H.c.

]
+

aτ ′

vF
∑

r∈A,τ ′

3

∑
i=1

[
(h+δhi(r))a†(x)b(x+si)+H.c.

]
, (2.3)

SG =
√

3β ∑
r∈A

[
3− 1

2 ∑
j=1,2,3

(
Uτ ′(r +sj ,τ ′)U∗

τ ′(r ,τ
′)+c.c.

)]
, (2.4)

where the positionx ≡ (r ,τ ′), and the temporal link variableUτ ′(r ,τ ′) = exp
[
ie
∫ τ ′+aτ ′

τ ′ dτ ′A0

]
.

The parameterβ ≡ vF ε/e2 represents the inverse of the coupling strength, which is 0.037 in the
vacuum-suspended graphene.

3. Chiral symmetry breaking and restoration in the strong coupling limit

Sinceβ is sufficiently small, we expect that the expansion aroundβ = 0 (strong coupling
limit) works well. In this work, we only consider the leading order [O(β 0)] in the strong coupling
expansion, so that the gauge termSG does not contribute to the partition function:

Z(0) =

∫
[dχ†dχ][dU]e−SF . (χ = a,b) (3.1)

By integrating out all the link variables, a contact 4-Fermi term−(1/4)nχ(x)nχ(x+aτ ′) is gener-
ated, wherenχ(x) = χ†(x)χ(x) is the local charge density on the sitex. Here we convert this term
into fermion bilinear by Stratonovich–Hubbard transformation, with the bosonic auxiliary fieldσ
corresponding to the charge density difference between A and B sublattices,⟨na−nb⟩. σ serves
as the order parameter of the spontaneous sublattice symmetry breaking, which corresponds to the
“chiral condensate”⟨ψ̄ψ⟩ of Dirac fermions, and it gives an effective mass term to the fermions.

The partition function of the system is given by integrating out the fermion degrees of freedom.
Then we can obtain the effective potential per a pair of A and B sites,F(0)

eff (σ ;∆) = − 1
VNτ ′

lnZ(0),
as a function of the auxiliary fieldσ with the external parameter∆. When there is no Kekulé
distortion, the effective potential is given as

F(0)
eff (σ) =

1
2

σ2− 1
V

∫
k∈Ω

d2k ln

[(σ
2

)2
+

∣∣∣∣23Φ(k)

∣∣∣∣2
]
, (3.2)

where the first term corresponds to the tree level ofσ and the second term comes from the one-
loop effect of the fermion. Due to the interplay between these two terms, the effective potential
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Figure 2: The behavior of the effective potentialF(0)
eff (σ ;∆), with several values of the Kekulé distortion

∆′ = ∆/3h. When∆′ = 0.5, the effective potential becomes a monotonically increasing function.

has a minimum at finiteσ , i.e. the sublattice symmetry of the honeycomb lattice is spontaneously
broken at∆ = 0. Since the second term is dependent on the Kekulé distortion∆, the effective
potential changes its shape by varying the value of∆ (see Fig.2). Therefore, the expectation value
of σ behaves as a function of∆, as shown in Fig.3.

The amplitude of the spotaneous sublattice (chiral) symmetry breaking,σ(∆), quadratically
grows around∆= 0, while it eventually drops to zero for sufficiently large∆. The critical value of∆
is ∆C/3h=0.485, whereσ(∆) exhibits the second-order phase transition behavior. The suppression
of σ(∆) means that the chiral symmetry, which is spontaneously broken in the strong coupling
limit, is restored by the external Kekulé distortion. It can be qualitatively understood in terms of
the effective field theory with the four-component Dirac fermion representation: the propagator of
the Dirac fermion(k · γ +σ/2+∆γ3)

−1 is suppressed as|∆| → ∞, leading to a reduction of the
fermion one-loop effect in the effective potential. As a result, the tree level term (σ2/2) dominates,
and the effective potential becomes a monotonically increasing function ofσ . On the other hand,
the increase ofσ(∆) around∆ = 0 cannot be understood along the above description, since it
originates from the discrepancy between the exact dispersion relation and the approximated Dirac
cone structure far from the Dirac points. If the Dirac cone approximation is applied to the effective
potential, the resultingσ(∆) decreases monotonically around∆ = 0.

As a result of the interplay between the spontaneous sublattice (chiral) symmetry breaking and
the external Kekulé distortion, the amplitude of the spectral gap is also modified from that of the
free fermions:

E(K±;∆) =
√

[vF σ(∆)/2aτ ′ ]2+∆2, (3.3)

as a function of the distortion amplitude∆. When∆ < ∆C, the gap amplitude is enhanced from that
of the free fermions by the effect of sublattice symmetry breaking (effective mass term). When
∆ > ∆C, on the other hand, since the sublattice symmetry breaking is completely suppressed, the
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Figure 3: Charge density imbalance between two sublattices,σ , and the total energy gapE(K±;∆) =√
(vF σ/2aτ ′)2+∆2, as the functions of the external Kekulé distortion∆. σ(∆) first grows and then decreases

as|∆| increases, vanishing at the critical value∆C/3h= 0.485, whileE(K±;∆) remains finite for any value
of ∆. The dotted line shows the gap amplitude of the free fermion.

gap amplitude is not modified from that of the free fermions.

4. Conclusion

In this work, we have investigated the spontaneous sublattice (chiral) symmetry in monolayer
graphene in the presence of the effectively strong Coulomb interaction. We have introduced the
U(1) gauge theory on the honeycomb lattice as an effective field theory of the system, and have
observed the behavior of the system in the strong coupling limit of the Coulomb interaction by the
techniques of strong coupling expansion. As a result, while the fermion obtains a finite mass gap
due to the spontaneous sublattice (chiral) symmetry breaking, we have found that the sublattice
symmetry can be restored by the externally introduced Kekulé distortion, which does not break
the sublattice symmetry explicitly. Qualitatively, it can be understood as a flattening of the charge
density distribution due to the strong hopping effect in the Kekulé distortion. As a consequence of
such an interplay between the sublattice symmetry breaking and the Kekulé distortion, the spectral
gap of the fermion gets modified from that of the free fermions, so that it becomes no longer
proportional to the Kekulé distortion amplitude. We expect that such a behavior of the gap can
have some effect on the gap engineering of graphene towards the application as electronic devices.

While only the leading order in the strong coupling expansion has been considered in this
work, higher order terms have to be included in the realistic system. The next-to-leading order
[O(β )] terms consist of the interaction between nearest neighboring (NN) sites,

S(1)F =

√
3β
8 ∑

r ,τ ′
∑

i=1,2,3

[
a†(x)b(x+si)b

†(x+si +aτ ′)a(x+aτ ′)+H.c.
]
, (4.1)
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which may effectively modify the NN hopping strength. Therefore, it may either renormalize the
Fermi velocityvF , or cause a spontaneous Kekulé distortion. With a sufficiently strong NN inter-
action, our preliminary study shows a first-order phase transition between the sublattice symmetry-
broken phase and the spontaneous Kekulé distortion phase [9, 10]. Moreover, if the phonon-
mediated interaction is taken into account, there may also appear a BCS-type (superconducting)
order [11]. Thus, including various interaction terms, we expect that a rich phase structure of
monolayer graphene can be seen by performing the strong coupling expansion order by order.
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