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The possibility of identifying IR fixed points in the RG flow of four-dimensional gauge theories
by numerical simulations has attracted a lot of interest in recent years, due to their potential
applications for building models of Dynamical Electroweak Symmetry Breaking. Different lattice
methodologies have been applied to this task, each of them having their own systematic errors
that need to be understood in order to draw robust conclusions. We aim to study some of these
systematic errors in the context of three-dimensional scalar field theories. This approach allows
us to perform high-precision numerical simulations, whose results can be compared to existing
analytical results.
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1. Introduction

To understand the systematic errors in the current lattice studies of RG flows, it would be very
useful to have a gauge theory with a non–trivial IRFP which can also be solved analytically, so that
the outcome of the numerical simulations can be compared to the analytic results.

In the absence of such a theory, an interesting alternative theory to play with is (φ 2)3
3, whose

RG structure has been studied analytically for large N [1]. This is a scalar gauge theory in three
dimensions, where the field φ has N real components, with a lagrangian:

L =
1
2
(∂µφ)2 +

1
2

µ
2
φ

2 +
1
4

λ (φ 2)2 +
1
6

η(φ 2)3 . (1.1)

1.1 Gaussian FP

The simplest fixed point is the gaussian one at µ2 = 0 for the free theory λ = η = 0. The
field φ has length dimension −1/2, so the coupling for a φ 2n term has dimension n−3. Thus the
renormalisation of the couplings as the scale is changed by a factor s is:

µ2 → s2µ2

λ → sλ

η → η

(1.2)

so µ and λ are relevant operators, η is marginal and any higher-dimensional operators are irrele-
vant.

1.2 Wilson-Fisher FP

The theory has another fixed point at µ∗2 < 0 and λ ∗, while η = 0. The ε–expansion in
ε = 4−d shows that there is only one relevant critical exponent ν = 0.6290(25), a marginal one;
the first irrelevant operator has a critical exponent ω = 0.814(18). The ε–expansion also predicts
a small anomalous dimension for the rescaling of the fields η = 0.036(5) (η here refers to the
anomalous dimension of the field; this is the conventional notation for this exponent, and it should
not to be confused with the coupling of the φ 6 term in the action). These values are obtained from
a 5-loop computation in the ε–expansion presented in Ref. [2].

2. Implementation

2.1 Lattice model

The model is implemented on a periodic lattice with L̂3 points, lattice spacing a, and physical
volume L3 = (L̂a)3. A discretised langrangian, where zx ≡

√
aφ(x), is given by [1]

L =
1
2

3

∑
µ=1

[zx+µ − zx]
2 +

1
2

µ
2z2

x +
1

4N
λ (z2

x)
2 +

1
6N2 η(z2

x)
3, (2.1)

which can be rewritten as

L =−
3

∑
µ=1

zx+µ .zx +(3+
1
2

µ
2)z2

x +
1

4N
λ (z2

x)
2 +

1
6N2 η(z2

x)
3. (2.2)
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where the bare couplings µ,λ ,η are in units of the lattice spacing.
A lattice set up for (φ 4)4 and (φ 4)3 with N = 1 is described in Ref. [3], and extended to (φ 6)3

for N = 1 in Ref. [4].
The lattice variables are updated using a mixture of the Metropolis [5] algorithm and a cluster

algorithm. The cluster algorithm was originally introduced for updating spin systems [6], and
subsequently adapted to scalar field theories [7, 8]. When the system has large correlation lengths
(e.g. near Ising limit), adding cluster updates between Metropolis sweeps significantly reduces
autocorrelation times.

2.2 Observables

The Fourier transform of the field is given by [4]

φ̃(p) = ∑
x

eip.xzx. (2.3)

A renormalised mass can be constructed from the Fourier transfom above, which is used to set the
scale,

(amR)
2 =

(ap)2〈|φ̃(p)|2〉
〈φ̃(0)2〉−〈|φ̃(p)|2〉

, (2.4)

where p = (2π/L̂a,0,0), the smallest non-zero momentum. The four and six point renormalised
couplings are given by

g4 =−(L̂amR)
3

[
〈φ̃(0)4〉
〈φ̃(0)2〉2

−3

]
, (2.5)

g6 = 10g2
4− (L̂amR)

6

[
〈φ̃(0)6〉−15〈φ̃(0)4〉〈φ̃(0)2〉

〈φ̃(0)2〉3
+30

]
. (2.6)

Our implementation has been tested against some simple analytical predictions for the free
theory, and against existing results [3, 4, 9] in the interacting case. The agreement is always satis-
factory, and provides a satisfactory benchmark of our code.

3. MCRG methods

There have been previous MCRG studies of scalar field theories for N = 1, (φ 4)3 [12, 13],
(φ 4)4 [14], and (φ 4)2 [15]. These all use a single lattice at the critical point with a large basis of
operators, rather than the 2–lattice matching method.

3.1 Method

The original MCRG method [16] goes as follows. Consider a hamiltonian that can be written
as a sum of couplings Ki and observables Si,

H = ∑
i

KiSi , (3.1)

and an RG transform Rs of scale s such that

H(n+1) = RsH(n) = ∑
i

K(n+1)
i S(n+1)

i . (3.2)
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The fixed point of the RG transform is defined by the condition

H∗ = RsH∗ = ∑
i

K∗i S∗i , (3.3)

and near this point the flow in the couplings can be expanded linearly to give

K(n+1)
i −K∗i = ∑

j
T ∗i j(K

(n)
j −K∗j ) , (3.4)

where

T ∗i j =
∂K(n+1)

i

∂K(n)
j

∣∣∣∣∣
H∗

. (3.5)

The chain rule gives

∂ 〈S(n)i 〉
∂K(n−1)

j

= ∑
k

∂K(n)
k

∂K(n−1)
j

∂ 〈S(n)i 〉
∂K(n)

k

= ∑
k

Tk j
∂ 〈S(n)i 〉
∂K(n)

k

. (3.6)

From which Tk j can be constructed using the identities

∂ 〈S(n)i 〉
∂K(n−1)

j

= 〈S(n)i S(n−1)
j 〉−〈S(n)i 〉〈S

(n−1)
j 〉 ≡ A(n)

i j , (3.7)

∂ 〈S(n)i 〉
∂K(n)

j

= 〈S(n)i S(n)j 〉−〈S
(n)
i 〉〈S

(n)
j 〉 ≡ B(n)

i j , (3.8)

and finally:
⇒ T = B−1A . (3.9)

The eigenvalues of Ti j give the critical exponents of the system [17], e.g. ν = lns/ lnλh,
where λh is the largest eigenvalue. Note that, from a single simulation close to the critical point,
correlation functions of blocked observables are measured to construct the matrix Ti j, and extract
the critical exponents.

3.2 Blocking Transforms

The simplest RG blocking transform is a gaussian smeared average given by [18]

e−S[ϑ ] =
∫

d[φ ]e−S[φ ]e−
aW
2 ∑nB [ϑ(nB)−b∑n∈nB φ(n)]

2

, (3.10)

where aW is a free parameter, which can be varied to optimise the RG transform. In the limit
aW → ∞ the gaussian becomes a delta–function, and the RG transform becomes a simple average
over the points in nB,

ϑ = b ∑
n∈nB

φ(n) (3.11)

The parameter b is not a free parameter here - it needs to be tuned according to the anomalous
dimension of the fields at the fixed point,

b = s−(d+2−η)/2 . (3.12)
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The value of η is tuned by requiring that T ∗i j has an exactly marginal eigenvalue λ = 1.
Blocked fields ϑ that satisfy Eq. 3.10 are given by [15]

ϑ(nB) = b ∑
n∈nB

φ(n)+
ζ√
NaW

, (3.13)

where ζ is a random gaussian variable with zero mean and variance 1.
A basis of local observables {Si} is required for the MCRG method. In Ref. [15] four types of

observables were used: φ(n)φ(n+u), φ(n)2k, φ(n)φ(n+u)φ(n)2k, and φ(n+w)φ(n+u)φ(n)2k.
Observables can be added to the analysis until adding more doesn’t change the results. (Up to

40 were used in Ref. [15]).

4. MCRG at the Gaussian FP

The most basic test is at the gaussian FP (N = 1, η = λ = µ2 = 0). Ref. [13] uses µ2 = 0.001
on 323 lattices, with a fourier-space RG blocking transform. We cannot simulate directly at µ2 = 0
as the correlation length diverges; we performed a first test by using µ2 = 0.01 on 163 lattices. The
bare observables Ok = 〈φ(n)2k〉 agree reasonably well with Ref. [13]. A more comprehensive study
at smaller masses requires larger lattices to ensure mRL� 1. Using two observables, and aW = 25,
we compute the two largest eigenvalues at the Gaussian FP. The results are reported in Tab. 1 for
several values of the bare mass µ2. The results for the eigenvalues converge nicely towards the
analytic prediction as the mass of the field is reduced. Note that the results with 3 steps are more
affected by finite-volume effects.

µ2 mRL 1 step 2 steps 3 steps
0.050 3.52 4.128 3.760 3.368

1.352 0.736 0.888
0.020 2.24 4.120 3.904 3.488

1.280 1.600 1.816
0.010 1.55 3.960 3.960 3.864

1.872 1.960 1.784
0.009 1.48 3.984 3.928 3.976

1.768 1.888 1.536

µ2 mRL 1 step 2 steps 3 steps
0.001 0.53 4.000 4.008 3.976

1.984 2.048 2.112
0.0008 0.44 4.002 4.013 3.997

1.991 1.979 2.008
0.0005 0.35 4.011 4.031 3.922

1.976 1.941 2.079
analytic ∞ 4

2

Table 1: Results of the stability matrix computations for two eigenvalues at the Gaussian FP.

5. MCRG at the Wilson-Fisher FP

Some critical couplings as calculated from a strong coupling expansion are given in Ref. [12],
but in order to do MCRG for a range of fixed points and theories we need to be able to determine
the critical couplings on the lattice.

For fixed λ = 10, µ2 is varied to look for a critical point. It seems the two quantities best
suited for identifying this point are the correlation length ξ = 1/(amR), where amR is defined in
Eq. 2.4, and the Binder cumulant [20] (also used in e.g. [10])

U =
〈m4〉
〈m2〉2

, (5.1)

where m = ∑x zx. Figure 1 shows how various observables behave as a function of µ2 on a 323

lattice.

5



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
0
6
1

3D-RG L. Del Debbio

 0

 0.2

 0.4

 0.6

 0.8

 1

 3  3.5  4  4.5  5  5.5  6  6.5

-µ2

Observables on 323 lattice, λ=10

ξ/L
1/U

1/g4
1/g6

Figure 1: Some observables as a function of µ2 on a 323 lattice at λ = 10. Strong coupling expansion gives
the critical mass as −µ2 = 4.9386

The Wilson-Fisher FP is found at non–zero λ with µ2 < 0 tuned to a critical value. This
has been investigated in the past using real–space [12] and Fourier–space [13] MCRG methods.
Critical pairs of λ ,µ2 from a strong coupling expansion are tabulated in Ref. [12], here we use
µ2 =−6.0,λ = 12.672, generating 500 uncorrelated configurations.

From requiring an exactly marginal eigenvalue of 1, in principle one can find η = 0.03 for
the rescaling of the fields as in Eq. 3.12. The critical exponent for this model is known to be
ν = 0.6290(25), which corresponds to a largest eigenvalue of 3.01. The largest eigenvalue that we
find after 1/2 blocking steps with aw = 25, as a function of the number of observables and lattice
size is shown in the left-hand size of Tab. 2. Fixing the number of observables to six and varying
the blocking steps gives the results on the right-hand side of the same table.

L 1 obs 2 obs 3 obs 4 obs 5 obs 6 obs
8 2.60 2.66 3.00 3.08 3.08 3.12
16 2.72 2.72 3.03 3.03 3.03 3.04
32 2.83 2.83 3.04 3.04 3.04 3.04
64 2.80 2.80 3.03 3.02 3.03 3.03
128 2.76 2.75 3.04 3.03 3.03 3.02

L 0/1 1/2 2/3 3/4 4/5 5/6 6/7
8 2.787 3.124

16 2.701 3.036 3.120
32 2.740 3.037 3.084 3.164
64 2.735 3.029 3.109 2.955 2.998
128 2.904 3.024 3.041 3.170 2.925 2.928

Table 2: Largest eigenvalue at the WFP, using the stability matrix method.

6. Outlook

In order to understand better the features of MCRG methods, we have started to apply these
methods to investigate simple 3D models. In the large-N limit these models can be solved analyt-
ically, and the results of the numerical simulations can be compared to the analytical predictions.
We expect these models to provide a robust testing ground for the methods that are currently used
for the study of IRFP in 4D gauge theories, see e.g. Ref. [21] and references therein.
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