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1. Introduction

Our interest in five-dimensional gauge theories is motivated by the modelysitptbeyond
the Standard Model called Gauge-Higgs Unification. When dimensionattied from five to
four dimensions occurs, the five-dimensional components of the galgjbdigave as scalar fields
which could be identified with the Higgs particle. The physical content ofthkasfields is carried
by the Polyakov loops winding along the fifth dimension. In this contribution @recentrate on
the possibility of dimensional reduction and the mechanisms underlying it. Wea=smphthat
due to the non-renormalizability (or triviality) of five-dimensional gauge thesgit is important to
perform this study in five dimensions, despite the computational cost. Itriféatity is related to
the existence of a bulk phase transition in five dimensions [1].

Our setup is d1 x L2 x Ls Euclidean lattice. The SU(2) Yang-Mills theory is discretized
using the anisotropic Wilson plaquette gauge action [2]

szgz:ig;ml—UMMwﬂ+v%Uﬂ—UMu5H7 (1.1)

where the traces are over oriented plagquettes and the indiecesun over the usual four dimen-
sions. The lattice coupling® andy are are related in the classical limit to the lattice spacags
four dimensionsgs in the fifth dimension and to the dimensionful bare gauge cougrtgrough
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An alternative but equivalent parameter pair is

m:ﬁ and s =By. (1.3)

We take periodic boundary conditions in all the directions. Here we digbessain results and
refer to [4] for more details. In [5] we report on recent results usirfold boundary conditions.

2. The mean-field phase diagram

In [3, 6] the five-dimensional SU(2) gauge theory has been investigsed the mean-
field method, which is an expansion around a saddle-point. The saddkegonfiguration is
parametrized byl for the four-dimensional links an®1 for extra dimensional links1(is the
2 x 2 identity matrix) and is found by iteratively solving the equations
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wherel; » are modified Bessel functions ahek 6B4V° + 2sW2, hs = 8035v2vs. The result is shown
in Fig. 1. There are three phases, one in wieh0, Vs # 0 (blue area, the deconfined phase), one
in whichv # 0, V5 = 0 (red area, the layered phase) and one in wkiiehO = vs (white area, the
confined phase). The black points mark values where no convergeacknite value is attained
and the dashed line represefiis= [s.
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Figure 1: The phase diagram of the five-dimensional SU(2) gauge thesing the anisotropic Wilson
plaguette gauge action in the mean-field approximationd{eagoint solution).

In [6] it was found that dimensional reduction occurs wifign- s, or as > a4. The transition
from the deconfined to the layered phase turns second order andirucom limit can be taken.
In the limit, the four-dimensional hyperplanes orthogonal to the fifth dimendemouple and a
theory in the universality class of the four-dimensional Ising model is obtaihe correlation
length is given by the inverse scalar mass. The continuum limit is taken in fidileneckeeping
two quantities, the anisotropgyand the ratio of the vector to the scalar mass, fixed. In the following
we verify if this scenario is confirmed by Monte Carlo simulations of the full theo

3. The phase diagram from Monte Carlo simulations

3.1 Bulk phase transitions

Fig. 2 is the summary of our results concerning the phase diagram [4]pdines marked
by red squares (and connected by a grey band to guide the eye)llnehlage transitions and
they are signaled by the behavior of the plaguette. Fig. 3 shows this transiteoscan of3s
keepingBs = 2.33 fixed. The hysteresis effect is seen provided the four-dimensiahaine is
large enough, in this case we nelegl = Ls > 14 (Ls is approximatelyLs/2). If the volume is
smaller the transition appears like a cross-over, due to compactificatiorsefdirections (we will
return to this issue in the next section). In order to study bulk phase trarssitibenf, > 35 we
need to ensure that four directions of the lattice, Ls) are large enough, sineg < as. This has to
be compared with studies B4 > B4, whereLs only has to be made sufficiently large. In summary,
the grey band in Fig. 2 is a line of first order phase transitions. From merasats of the static
potential we know that this line separates the confined phase at sifiafiemm the deconfined
phase.
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Figure 2: The phase diagram of the five-dimensional SU(2) gauge thsiotylated with the anisotropic
Wilson plaquette gauge action [4].
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Figure 3: Bulk phase transition g8; = 2.33. Lattices withLs > 14 are needed to see the hysteresis in the
plaquette (here Plags the four-dimensional plaquette).

3.2 Phase transitions related to center breaking

Fig. 2 presents phase transition points due to compactification of one direatiich are
signaled by the behavior of the Polyakov loop winding along the small directiiren compact-
ification occurs, the Polyakov loop expectation value (its absolute valwenies non-zero. At
Bs > B4 there are second order phase transitions when 2,4, 6, ... which have been studied in
[7, 8]. Our new results mainly concern the regi@n> s, where we compactiff.t = 2,4, .. ..
Fig. 4 shows a study of the transition with = 2 at35 = 0.5. We do a finite size scaling analysis



Dimensional reduction from five-dimensional gauge theorie Francesco Knechtli

1.842

600

‘ B4<‘; Poly. ‘ X‘Poly ——
1.84 | Bac POWT(Xs:lS . XPO‘VT(XS:lg
1838 | 500 -
1.836 - i
1.834 .
S 1832t 2300 - )
183 -
1.828 200
=
1.826 - ’ 100 |
1.824 -
1822 h L L L L L L L L 0 L L L L L L L L
004 005 006 007 008 009 01 011 012 013 004 005 006 007 008 009 01 011 012 013

UL, 1L,

Figure 4: Finite size scaling analysis for the transitionfgt= 0.5, Lt = 2: the critical couplingB4; (left
plot) and the critical susceptibility; of the temporal Polyakov loop (right plot). The lines aretiitshe data
using the critical exponents of the four-dimensional Isimgdel. Two definitions of the Polyakov loop are
used, see [4].
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Figure 5: Histograms of the absolute value of the temporal Polyakop ktf34 = 2.32, 35 = 0.5 andLt = 4:
taking the average over the extra dimension (left plot) @ fted slice (right plot) [4].

varyingLs = 8...24 while keepind-s = Ls/2. We measure the critical couplirflac(Ls), at which
the susceptibility of the temporal Polyakov loop has its maximyg(ls). The data foi3s. and xc
are perfectly compatible with the scaling laws

|Bac(Ls) — Bac(Ls = )| ~ Ls™"  (4d Ising:v = 1/2), (3.1)
Xe(Ls) ~ LYY (4d Ising:y = 1), (3.2)

using the values of the critical exponemtsy of the four-dimensional Ising model. We thus confirm
[9].

At Lt =4 we encountered a new phenomenon. If we average the temporal Rolyagmver
the fifth dimension and then take the absolute value multiple peaks appear inttggdnis of the
Monte Carlo history, see the left plot of Fig. 5. If instead we take the Poly&dop at a fixed slice
along the extra dimension, we obtain a single peak, see the right plot of. HigeSe observations
can be interpreted if we assume that the hyperplanes along the fifth dimansidecoupling from
each other. The finite size scaling analysis using the Polyakov loop at #iedlice confirms the
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Figure 6: Shape of the static potential @ = 2.5, 85 = 0.5 in the confined phase. The coupliagy(1/r) =
4r2F (r)/3 (left plot) and the slope(r) = r3F’(r)/2 (right plot), whereF is the static force and the distance
r is orthogonal to the fifth dimension.

universality class of the four-dimensional Ising model alsbrat 4 [4].

3.3 Dimensional reduction in the confined phase

We measure the static potential in the five-dimensional confined phase irvtaugee. We
choose3; = 2.5 andBs = 0.5, the lattice dimensions atg = Ls = 32, Ls = 16 and we analyze
two replica for a total of 17234 measurements. Each measurement of the\Witgrs is separated
by 10 update iterations and each iteration consists of one heatbath anéri@axation sweeps
through the lattice. For the time-like links we use the one-link integral [13] anthE space-like
links 4 levels of spatial HYP smearing [14]. As explained in [4] we can exttee potentiaV/(r),
where the distanceis taken orthogonal to the fifth dimension. From the potential we determine
the forceF (r) = {V(r+as) —V(r)}/as and define the renormalized couplings

agq(1/r) = 42F(r)/3 and c(r) =r3F'(r)/2. (3.3)

The effective bosonic string theory [10, 11] yields the asymptotic valoe = —(D — 2)71/24,
whereD is the number of space-time dimensions.

The lattice spacing measured in units of the scalf2] is ro/as = 6.41(21). In Fig. 6 we
show our results for the couplings Eq. (3.3). The datartgrare compared to perturbation theory in
the four-dimensional Yang—Mills theory up to three loops and they ardstensat the two smallest
distances. The slopxr) is harder to measure, it shows a trend towards the four-dimensional value
of the effective string but the statistical error is already too largegip0

4. Conclusions

We have explored through Monte Carlo simulations the phase diagram dfifensional
SU(2) lattice gauge theory on the torus, in the light of mean-field resultsifeo@opyy < 1. The
phase diagram is shown in Fig. 2. The bulk phases which we identify amtiimed and decon-
fined phase. We do not find a separate layered phase, like there is indhefigld phase diagram
Fig. 1. Nevertheless we find properties reminiscent of the layered gilestihe decoupling of the
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hyperplanes along the fifth dimension and signs of dimensional reductioe icotifined phase.
This could point at a localization mechanism for gauge fields, cf. [15, 16]
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