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In this article, we present an ongoing lattice study of the Higgs-Yukawa model, in the regime

of strong-Yukawa coupling, using overlap fermions. We investigated the phase structure in this

regime by computing the Higgs vacuum expectation value, andby exploring the finite-size scaling

behaviour of the susceptibility corresponding to the magnetisation. Our preliminary results indi-

cate the existence of a second-order phase transition when the Yukawa coupling becomes large

enough, at which the Higgs vacuum expectation value vanishes and the susceptibility diverges.

The XXIX International Symposium on Lattice Field Theory - Lattice 2011
July 10-16, 2011
Squaw Valley, Lake Tahoe, California

∗Preprint number: DESY 11-219
†Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
0
7
5

Strong-Yukawa coupling C.-J. David Lin

1. Introduction

In recent years, there have been interests in the possible existence of heavy extra-generation fermions
(mass≥ 600 GeV) beyond the standard model (SM). Such heavy fermionsare a consequence of
strong-Yukawa couplings. Their presence in nature remainsto be examined by experimental data
that will be collected at the LHC. An important consequence of a 4th fermion generation is the
substantial enhancement the amount of CP violation [1]. Large bare values of the Yukawa cou-
pling may also lead to the formation of bound states which canreplace the role of the Higgs boson
in unitarising the WW scattering process [2, 3, 4]. Such a scenario is clearly of nonperturbative
nature and motivates the use of lattice field theory as a first-principle and nonperturbative tool for
this research avenue. Lattice investigations at small and moderate values of the bare Yukawa cou-
pling showed [5] that the lower Higgs boson mass bound is strongly affected by the presence of
a heavy 4th fermion generation when compared to results using a physical value of the top quark
mass [6, 7]. Still, in these simulations no signs of bound states were observed, as expected.

However, lattice simulations have also revealed the existence of an interesting phase structure of
the model at large values of the Yukawa coupling [8, 9, 10, 11,12, 13, 14, 15]. These simulations,
performed around 1990, were lacking an exact chiral symmetry on the lattice and the results of
these works are therefore not easy to interpret and to connect to the SM. Recently, exact lattice
chiral symmetry [16] were established and, in fact, latticesimulations employing this lattice chiral
symmetry confirmed the phase structure at strong bare Yukawacoupling [17, 18] as found in the
earlier studies.

In this work we further explore the phase structure of a lattice chirally invariant Higgs-Yukawa
model at large values of the Yukawa coupling. Our main aim is to start a systematic investigation,
whether the phase transitions between the symmetric phase with vanishing vacuum expectation
value (VEV)v = 0 and the broken phase withv > 0 are governed by critical exponents that dif-
fer from the (Gaussian) one of the SM. This is a highly non-trivial question. In particular, it
can be shown that the lattice Higgs-Yukawa model in the limitof infinite bare Yukawa coupling
reduces to a pure scalar non-linearσ -model [8, 9, 10, 17, 18] with again Gaussian critical expo-
nents. Hence, the most interesting and important question is, whether at large but finite value of
the Yukawa-coupling a new and non-trivial universality class emerges. We emphasise that a quan-
titative determination of critical exponents of the phase transitions in the strong Yukawa coupling
region using chiral invariant lattice fermions was never attempted before. The above potential of
nonperturbative physics at large Yukawa couplings motivates clearly such an investigation.

2. Simulation details

The discretisation of the scalar field theory leads to the action (with lattice spacinga set to 1)

Sϕ = −∑
x,µ

ϕα
x ϕα

x+µ̂ +∑
x

[

1
2
(2d+m2

0)ϕα
x ϕα

x +
1
4

λ0(ϕα
x ϕα

x )2
]

, (2.1)
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whereα labels the four components of the scalar fields,d is the number of the space-time dimen-
sions,m0 is the bare mass andλ0 is the bare quartic self-coupling. For practical lattice simulations,
it is convenient to perform the change of variables

ϕ =
√

2κφ , m2
0 =

1−2λ̂ −2dκ
κ

, λ0 =
λ̂
κ2 , (2.2)

whereκ is the hopping parameter. This renders the lattice scalar field theory to the Ising form

Sφ = −2κ ∑
x,µ

φα
x φα

x+µ̂ +∑
x

[

φα
x φα

x + λ̂ (φα
x φα

x −1)2
]

, (2.3)

which is more suitable for exploring the phase structure.

In this work, we use the overlap operatorD(ov) in the lattice fermion action

SF = Ψ̄M Ψ, where M = D
(ov) +P+ Φ† diag(yt ′ ,yb′) P̂+ +P− diag(yt ′ ,yb′) Φ P̂−, (2.4)

with

Ψ =

(

t ′

b′

)

, and Φ =

(

φ2 + iφ1

φ0− iφ3

)

. (2.5)

The chiral projectors are defined as

P± =
1± γ5

2
, P̂± =

1± γ̂5

2
, γ̂5 = γ5

(

1− 1
ρ

D
(ov)
)

, (2.6)

whereρ is the radius of the circle of eigenvalues in the complex plane of the free overlap operator.
We also setyt ′ = yb′ = y, to ensure that the fermion determinants are positive definite.

Our simulations have been performed at twoκ values,κ = 0.00 and 0.06, with the bare Yukawa
couplingy in the range between 14 and 25. The bare scalar quartic coupling λ̂ is fixed to infinity,
which results in the largest possible Higgs mass [5, 6, 7]. Wealready accumulated data with reason-
able statistics for the volumes 83×16, 123×24 and 163×32. In generating dynamical scalar field
configurations, we use the polynomial HMC (pHMC) algorithm [19], treating the weight factor as
an observable [20]. We have found that high degrees of polynomials (∼ 180 for 163×32 lattices)
are necessary in order to obtain reasonable statistical accuracy for the weight factor. For each set
of the bare couplings, we carry out 1000 pHMC trajectories toprecondition the fermion matrix
and to thermalise the simulation. Our measurements are thenperformed on∼ 2000 thermalised
trajectories.

3. The scalar vacuum expectation value

We first measure the scalar VEV to probe the phase structure. Our simulations have been performed
without external sources, therefore a naive computation ofthe VEV would always lead to vanishing
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Figure 1: Bare scalar VEV at twoκ values withλ̂ = ∞.

results in finite volume. In this work, we follow the procedure in Refs. [21, 22, 23] to project the
scalar fields on the direction of magnetisation

m=
1
V4

(

∑
α ,x

|φα
x |2
)1/2

(V4 is the 4−dimensional volume), (3.1)

then compute the VEV. This “projected” VEV coincides with the scalar VEV in the infinite-volume
limit, and its introduction in finite volume is equivalent tocoupling the scalar fields to external
sources [23].

The results for the bare VEV, computed from the above projection procedure, are shown in Fig. 11.
It is clear that there is a phase transition wheny becomes large, at which the system enters a sym-
metric phase. These plots also indicate that the value ofy= ycrit at which the phase transition occurs
grows withκ . This agrees with the qualitative predictions from the strong-coupling expansion [25],
the large-Nf expansion [17] and an exploratory numerical study using overlap fermions [18].

4. Finite-size scaling of the magnetisation susceptibility

In order to determine the order of the phase transition observed in the last section, we investigate the
finite-size scaling behaviour of the susceptibility corresponding to the magnetisation. It is defined
as

χ = V4
(

〈m2〉− 〈m〉〈m〉
)

, (4.1)

whereV4 andmare defined in Eq. (3.1). This quantity diverges at the critical points in the infinite-
volume limit. Finite-size effects result in the crossover from this bulk behaviour to the finite-
volume scaling behaviour in lattice calculations. In the vicinity of a would-be second-order phase

1We are currently computing the Goldstone wavefunction renormalisation to obtain the renormalised Higgs
VEV [24].
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Figure 2: Susceptibility at twoκ values at various volumes witĥλ = ∞.

transition, the solution of the renormalisation group equation (RGE) in finite volume predicts [26]

χL−γ/ν
s = g(tL1/ν

s ), with t = (y/(ycrit −A4/Lb
s)−1), (4.2)

whereg is a universal function,Ls is the spatial volume,ycrit is the critical Yukawa coupling at
which the phase transition occurs in the infinite-volume limit, A4 is a phenomenological parame-
ter, ν andγ are the universal critical exponents (anomalous dimensions), andb is the shift expo-
nent [27].

For each of the twoκ values in our simulations, we perform a simultaneous fit of the data for the
susceptibility at all volumes, to the partly-empirical formula [28]

χ = A1

{

L−2/ν
s +A2,3

(

y−ycrit −A4/Lb
s

)2
}−γ/2

, (4.3)

whereA1,2,3,4 are unknown phenomenological coefficients. They are determined, together withν ,
γ , ycrit andb, from the fits. For our best procedure, the fit ranges ofy are(14.5,19.5) for κ = 0,
and(14,22) for κ = 0.06. The extractedycrit, γ , ν andb are presented in Table 1. For comparison
with the scaling behaviour in the regime where the Yukawa couplings are weak and perturbative,
we also list the predictions from the mean-field calculationin theO(4) scalar model. We use these
fit results to obtain the susceptibility as a function ofy according to Eq. (4.3). This is plotted with
our data points in Fig. 2. We also use the same fit results to constructχL−γ/ν

s andtL1/ν
s , to examine

the finite-size scaling behaviour of Eq. (4.2). The outcome of this test is shown in Fig. 3.

Our data, as presented in Figs. 2 and 3, establish evidence for the existence of a second-order phase
transition in the strong-Yukawa coupling regime. To further investigate the nature of this strong-
Yukawa symmetric phase, we have to perform more detailed studies on the critical exponents and
the spectrum. As demonstrated by the results collected in Table 1,γ is almost consistent with the
corresponding mean-field prediction for theO(4) scalar model, whileν exhibits a more significant
deviation from it. By varying the fit ranges iny in a reasonable interval for the above finite-size
scaling analysis, the shifts inycrit and the critical exponentγ are not statistically distinguishable.
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Figure 3: The scaling behaviour of susceptibility at twoκ values withλ̂ = ∞.

On the other hand,ν can change by∼ 11% and become almost consistent with the value in the
O(4) scalar model. We have also tried incorporating logarithmicvolume effects in Eq. (4.3) by
replacing the coefficientA4 with A4[1+ c Log(Ls)] (c is an unknown parameter). This procedure
leads to no statistically significant variation of the critical exponents,ν andγ .

5. Summary and outlook

In this article, we present an ongoing numerical investigation of the phase structure of the strong-
Yukawa model on the lattice. Using overlap fermions which respect exact lattice chiral symmetry,
and performing simulations at various volumes, enable us toexplore the details of the phase struc-
ture. From our computation of the scalar VEV and the study of the finite-size scaling behaviour
of the magnetisation susceptibility, we obtain strong evidence that there exists a symmetric phase
in the strong-Yukawa coupling regime, and that the transition between this phase and the broken
phase is of second-order nature. At the moment, we cannot determine if the critical exponents for
this phase transition are different from those in the weak-Yukawa regime.

We are currently generating large lattices (243 × 48) which will allow us to have more precise
extraction of the critical exponents. These lattices will also enable us to control the infinite-volume
extrapolations in our future calculation for spectral quantities.

κ = 0.00 κ = 0.06 O(4) scalar model

ycrit 16.57±0.06 18.11±0.06 N/A

γ 1.02±0.02 1.08±0.01 1

ν 0.57±0.03 0.66±0.02 0.5

b 2.05±0.20 2.04±0.20 N/A

Table 1: The critical Yukawa couplingycrit, the critical exponentsγ, ν, and the shift exponentb determined
from the best fits to the finite-volume scaling function. The errors are statistical only. Predictions from the
mean-field calculation in theO(4) scalar model are also listed.
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