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In perturbative calculations the masses of the Higgs, theWs and theZ are usually determined from

the pole position of the corresponding gauge-dependent propagators. In full non-perturbative

lattice calculations it is much more direct to instead investigate the bound state spectrum with its

gauge-independent meaning, which then contains bound states of Higgses and/orWs andZs. It is

possible to extend the perturbative definition of the Higgs mass also to such a full non-perturbative

setting by determining the respective full non-perturbative propagators of the Higgs, theWs, and

theZ, and analyze their analytic structure. This helps connecting the Higgs properties indirectly

with gauge-invariant physics. This is here studied, using lattice gauge theory, for the case of a

W -Z-Higgs system.
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1. The Higgs mass in and beyond perturbation theory

The precise definition of the mass of a particle is a highly non-trivial problem, in particular in
case of unstable particles. This is even more the case for (renormalizable) gauge theories. The most
direct definition of the mass of a particle is just given by the(time-like) poles of its propagator [1].
These poles move to complex values if the particle is unstable, in particular off the first Riemann
sheet. Nonetheless, the pole mass (and width) remains a well-defined concept.

In perturbative calculations, where the analytic structures of the propagators are known, such
poles can be directly identified. This becomes complicated if the propagators are not known in a
closed analytic form, which is usually the case in non-perturbative calculations in Euclidean space-
time. In these cases, various approaches like fitting the propagators to candidate analytic forms
[2] or approximate reconstruction of the spectral function, e. g. by use of the maximum entropy
method [3], is the approach of choice, despite the inherent systematic uncertainties [4, 5].

In a (non-)renormalizable theory, these technical problems become supplemented by concep-
tual ones. The masses of the elementary particles are usually no longer renormalization-group
invariants, and are furthermore scheme-dependent [1]. They do therefore no longer represent phys-
ical observables, but can only be determined at a given renormalization scale in a given renor-
malization scheme. The translation between different schemes and scales can usually be done
straightforwardly in perturbation theory. Beyond perturbation theory, this is a non-trivial problem.

The situation becomes even worse when the theory at hand is a gauge theory. In this case,
the elementary degrees of freedom are no longer gauge-invariant, and therefore the associated pole
masses may also no longer be so. It seems that the best that canbe achieved is gauge-parameter
independence, i. e., that within a certain class of gauges the masses are gauge-invariant, as dictated
for covariant gauges by Nielsen identities [6]. However, these will break down in general when
moving to a different class of gauges [6]. Nevertheless, it is still possible to give a precise definition
of a mass in a fixed gauge. E. g., in the weak sector of the standard model usually a ’t Hooft gauge
is chosen [1], which is a class of gauges in which the masses ofthe perturbatively physical degrees
of freedom are not depending on the representative [1]. Beyond perturbation theory, due to the
Gribov-Singer ambiguity, this problem also becomes usually worse, though the latter effect may be
mild for the Higgs sector of the standard model [7].

As a consequence, full non-perturbative calculations usually use gauge-invariant quantities to
characterize a theory. The simplest is the bound state spectrum, as is done in lattice gauge theory
[8]. However, this implies that the relevant degrees of freedom are composite objects, made e. g.
from two Higgs particles in a scalar isoscalar 0++ state [7, 9]. Such an object would be rather
hard to identify experimentally, in particular as it could be expected to be rather short-lived, and
may not have much more structure like the notoriousσ -meson of QCD. Nonetheless, in a lattice
calculation, in particular when neglecting everything butthe weak isospin sector and the Higgs
sector, the properties of these particles can be determined[9–11]. Similar considerations also
apply for theW andZ bosons, with corresponding bound states, calledW -balls andZ-balls [7, 9].

It is of course desirable to connect both descriptions. Thisis the aim here, where simultane-
ously in a full non-perturbative calculation the bound-state spectrum and the mass of the Higgs and
the gauge bosons will be determined from their respective (gauge-dependent) propagators. In these
preliminary results of this exploratory investigation, only the weak gauge bosons and the Higgs are
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included, which implies that theW and theZ will be degenerate, and commonly denoted asW .

2. The physical spectrum

The setup of the lattice simulation of the theory is given in [7]. Here, since only the approach
of connecting both concepts will be investigated, a single lattice setup with fixed volume and fixed
lattice spacing deep inside the Higgs phase will be used. Since only one lattice setup is used, the
scale is arbitrary, and will be set to 231 GeV. The infinite-volume and continuum limit as well as
the question of triviality will be addressed elsewhere [12].

Since there are three free parameters in the theory, the gauge coupling, the Higgs mass, and the
Higgs self-interaction, it is necessary to determine at least three different observables to fix these.
These are selected to be three bound states of theW and the Higgs particles.

The first is the scalar isoscalar 0++ Higgsonium [7, 9–11], a bound state of two Higgs particles,
defined by the operatorH+(x)H(x), whereH is the Higgs field. The second is theW -ball [9],
defined analogously from the operatorW a

µν(x)W
a
µν(x), whereW a

µν is the field strength of theW
bosons. Note that often in the lattice literature, originating from [10, 11], these bound states are
referred to as Higgs andW instead of Higgsonium andW -ball, see for a discussion of this [7].

Since both operators mix with the vacuum, and thus with each other, their determination is
statistically hard. To reduce the statistical fluctuations, five levels of smearing with the methods of
[9] are applied. It is found that at least the masses of the lowest excitations are independent, within
statistical uncertainty, of the smearing process. To disentangle the two components, an eigenvalue
decomposition [8] is performed. The results of these calculations can be seen in figure 1. Despite
the large statistical noise, even for the employed 780000 configurations, a clear separation of both
states with little mixing can be found. The light state is theHiggsonium with a mass of 242(5)
GeV, while theW -ball has a mass of 433(3) GeV. This would correspond roughlyto a constituent
mass of the Higgs and theW of 121(3) and 217(2) GeV, respectively.

However, such a constituent picture cannot be as simple as inQCD. In figure 1 also the lowest
vector isovector 1−− state is shown, which can be constructed from a combination of the Higgs
and theW field as [9–11]

O1−−

µa (x) = trτaφ+(x)Uµ (x)φ(x+ eµ )

H = ρφ ,

whereρ is the length of the Higgs field, andφ is an SU(2) matrix encoding the remainder of
the Higgs degrees of freedom,τa is a Pauli matrix, andUµ is a link variable of the lattice setup,
behaving like the gauge field in the continuum limit. If the Higgs length fluctuates weakly around
its average value, this state can be interpreted as a vector composite of at least two Higgses and aW .
If the Higgs length fluctuates strongly, the matrixφ cannot be approximated by a finite polynomial
in the Higgs field, and the structure of this bound state has tobe regarded as a collective state.

The correlation function and its fitted mass is also shown in figure 1. Its mass is actually lower
than that of the two 0++ states, about 127(1) GeV. Such a hierarchy has been already observed
earlier [10]. Here, it implies that a simple constituent model, which would imply this state to be
heavier, does not apply. If this state is assumed to be made upof two collective modes, their mass
would be of order 64(1) GeV.
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Figure 1: The low-lying spectrum. The top-left panel shows the time-dependence of the two lowest eigen-
values of the 0++ channel. The composition of the corresponding states is given in the bottom-left panel.
The extracted masses are shown in the bottom-right panel. The correlation function of the lowest 1−− state
is given in the top-right panel, and its mass is shown in the bottom-right panel. Errors and error bands for
the fits are purely statistical at the 1σ level. Lattice parameters are size 244, κ = 0.32,β = 2.3, λ = 1 [7].

Thus, for the present lattice setup and a constituent picture, a Higgs mass of size 121 GeV and
aW mass of 217 GeV would be expected, but the existence of a lightstate of about 64 GeV would
be anticipated as well. In the next section, this will be compared with the perturbative definition of
both the Higgs and theW mass, using the corresponding gauge-dependent propagators.

3. W- and Higgs-propagators and Schwinger functions

In the following the gauge-fixed propagators of both theW and the Higgs will be discussed.
For this purpose, a non-aligned minimal Landau gauge [2, 12]will be used, which is constructed
such that the Higgs expectation value always vanishes [7, 12]. Therefore, it is not necessary to
distinguish between diagonal and off-diagonal propagators, and in particularW andZ bosons will
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have identical propagators, as long as no hypercharge is introduced. The same applies to the Higgs
and the would-be Goldstone bosons’ propagators. This simplifies the analysis significantly. The
actual lattice calculation of the propagators in this gaugeis straightforward, see [7, 12] for details.

The only thing remaining is how the renormalization conditions will be chosen. This will be
done here by requiring that the propagators ofW and the Higgs are atµ = 250 GeV as similar as
possible to the tree-level propagators of particles with masses of 80 GeV and 125 GeV, respectively.
For theW , this is only an overall wave-function renormalization, while for the Higgs its derivative
also has to match this condition. The results, for a few different volumes, are shown in figure 2.
There are a number of observations.

Concerning theW -boson, very small finite-volume effects are seen, in stark contrast to Yang-
Mills theory [2]. The propagator itself can be fitted using anunstable1 particle’s propagator ansatz

D(p) =
e2+ f p2

p4+2m2cos(2φ) p2+m4 , (3.1)

though even a fit with a stable particle’s propagator

D(p) =
1

p2+M2 , (3.2)

gives an acceptable description. However, fits are always problematic if the exact analytic structure
is unknown [4]. In general, any realistic fit must reproduce all transformations of the function to be
fitted. To check this, the Schwinger function [4], i. e. the temporal Fourier transform, is also shown
in figure 2. This shows that the analytic continuum transformations of (3.1-3.2) are not adequate.
Including lattice artifacts by making the discrete Fouriertransformation for the fits

∆(t) =
1

aπ
1
Nt

∑
i

cos

(

2πt p0

Nt

)

D(p2
0,~0), (3.3)

provides a much better description, though still being qualitatively incorrect at small times. A
possible reason is that the mass included is too hard, and an even softer mass could be necessary.

The situation changes for the Higgs. Here, both the propagator and the Schwinger function are
equally well fitted by an ansatz with a stable and an unstable particle’s propagator. Furthermore,
the quality of the fit for both the propagator and the Schwinger function is much better. Note that
the apparent unsystematic volume dependence is rather originating from the renormalization, as
the momentum spacing due to the lattice is entering sensitively in the calculation of the derivatives.

The fits permit to extract the would-be pole masses. These arelisted, together with the ex-
pected constituent mass and the screening mass, i. e.D(0)−1/2 [2], in table 1. It is visible how
the different definitions of the mass yield different results. Note that the extracted pole masses of
theW are independent of the renormalization condition. The massof the Higgs depends on the
renormalization condition, due to its additive mass renormalization [1]. The constituent masses are
renormalization condition independent, and thus different from the actual Higgs mass.

1This fit has complex conjugate poles, and thus not the correctanalytic structure for a genuine particle. However,
the logarithmic contributions, which would move the poles to the correct Riemann sheets [1] are too minor a correction
than that they are detectable with the present lattice results. Thus, the approximation of complex conjugate poles is
made.
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Figure 2: The propagator for theW (top panels) and the Higgs (bottom panels) in momentum space(right
panels) and the associated Schwinger function (left panels) for different volumes. The fits shown are for the
largest volumes only.

The remaining problem is that none of these masses needs to coincide with the masses ex-
tracted from the true propagators in the complex plane [4]. Fits, even more involved ones like the
maximum entropy method with its inherent problems [5], can at best indicate the correct analytic
structure. Thus, eventually a full calculation in the complex plane will be required.

4. Conclusions

Comparing the various definitions of the Higgs andW masses given, the final value depends
strongly on the way of determining it. It is furthermore not evident that any simple relation, like
in constituent quark models, exists between the masses of theW and the Higgs and the masses of
gauge-invariant bounds. It is in fact not even clear whethertheW and Higgs masses are eventually
gauge-invariant, it is just necessary to think of the impactof the choice of a gauge-dependent
renormalization scheme. Thus, the extraction directly from the corresponding gauge-dependent
propagator, like in perturbation theory, seems still to be the best defined approach.
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Particle Renormalized Screening Stable Unstable Width Constituent

W 80 145(3) 114(2) 110(2) 46(2) 217(2)

Higgs 125 154(1) 164(4) 151(8) 20(1) 121(3)

Table 1: The various definitions of masses extracted from the propagators, as discussed in the text. “Renor-
malized” is the mass implemented as good as possible by the renormalization conditions, “Screening” is the
screening mass, “Stable” is the mass extracted from a stableparticle’s propagator fit (3.2), “Unstable” and
“Width” are the values from an unstable particle’s propagator fit (3.1), and “Constituent” is the constituent
picture mass from the previous section. All values in GeV.

Of course, these problems repeat themselves even if the Higgs is not elementary but composite,
e. g. in technicolor theories [13]. Since a composite Higgs degree of freedom behaves at low
energies like in the present case, the composite state is necessarily also gauge-dependent. This leads
to precisely the same problems as encountered here for an elementary Higgs. Getting this under
control is therefore necessary even if the Higgs is not fundamental. Due to the strong interactions
involved in these cases, the Gribov-Singer ambiguity is of similar relevance as in Yang-Mills theory
[14], emphasizing the need for a well defined, non-perturbative gauge-fixing [2].
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