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We explore the phase diagram of the SU(2) Yang–Mills theory in 5 dimensions by numerical
simulations. The lattice system shows a dimensionally–reduced phase where the extra dimension
is small compared to the four-dimensional correlation length. In this phase, at low energies, this
system behaves like a four–dimensional gauge theory coupled to an adjoint scalar field.
By tuning the bare parameters of the lattice model, we identify lines of constant physics, and
analyse the behaviour of the adjoint scalar mass as a function of the compactification and the
cut–off scales.
The perturbative prediction that the effective theory contains a light particle with a mass that is
independent of the cut–off is tested against non–pertubative results.
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1. Introduction

Five–dimensional Yang–Mills theories with an extra dimension compactified on a circle pre-
dict the existence of a scalar low–energy mode, whose mass renormalisation is suppressed by the
remnant of the higher–dimensional gauge symmetry. It is well known that quantum corrections
yield divergences in the mass of a scalar particles: the scalar mass receives contributions propor-
tional to the square of the ultra–violet (UV) cut–off. However, the mass of the scalar particle
coming from the compactification of a higher–dimensional gauge field remains finite, as suggested
by one–loop and two–loop calculations [1].
Since the extra dimensional gauge theory is non–renormalisable, it can only be defined as a regu-
lated theory with an ultra–violet cut–off ΛUV. In this theory it is rather surprising to find quantum
corrections to the scalar mass independent of ΛUV and taking the form

m2
5 ≡ δm2 =

9g2
5Nc

32π3R3 ζ (3) , (1.1)

where ζ is the Riemann Zeta–function, Nc is the numer of colours, R is the radius of the extra
dimension and g2

5 is the coupling constant of the five–dimensional Yang–Mills theory. However,
Eq. (1.1) is valid only in the regime where there is a scale separation between the compactification
scale ΛR ∼ R−1 and the cutoff ΛUV, because in this case the details of the regularisation can be
neglected.
The aforementioned result makes the compactification mechanism a very interesting and promising
scenario to protect the mass of scalar particles from cut–off effects. In this proceeding, we report
on our recent work [2] where we studied a simple extra dimensional model (cfr. Sec. 2) regularised
on the lattice with periodic boundary conditions. Using numerical simulations in the region of
phase space where there is a hierarchy of scales ΛUV � ΛR, we are able to study the parametric
dependence of the adjoint scalar mass m5 on the cut–off ΛUV and on the compactification scale ΛR.
This allows us to clarify the status of Eq. (1.1) in the non–perturbative regime.

2. Scales separation in the lattice model

In recent years, there have been a number of studies on the simplest of these extra dimen-
sional theories on the lattice, namely a SU(2) pure gauge theory on a five–dimensional torus with
anisotropic couplings [3, 4, 5].
We discretise the pure gauge action using the following anisotropic lattice Wilson action:

SW = β4 ∑
x;1≤µ<ν≤4

[
1− 1

2
ReTrPµν(x)

]
+β5 ∑

x;1≤µ≤4

[
1− 1

2
ReTrPµ5(x)

]
, (2.1)

where the two bare coupling constants β4 and β5 can be tuned independently. This describes a
lattice system with two independent lattice spacings a4 and a5, corresponding respectively to the
lattice spacing in the four–dimensional subspace, and in the extra fifth direction; the bigger of the
two defines the inverse of the cut–off ΛUV.
The anisotropy of the couplings γ =

√
β5
β4

is related to the ratio of the lattice spacings ξ = a4/a5.
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At tree–level γ = ξ , but quantum corrections make ξ deviate from this value. The relation between
ξ and γ for this action has already been studied in bare parameter space and can be found interpo-
lating the data of Ref. [3]. In the following we restrict ourselves to study ξ ≥ 1 and the cut–off is
given by ΛUV ∼ a−1

4 .
Two more parameters in the lattice model can be adjusted in order to realise the desired separation
of scales; they are N4, the number of lattice sites in the usual four directions, and N5, the number
of lattice sites in the extra dimension. Together with the corresponding lattice spacings, they deter-
mine the physical size of the system: L4 = a4N4 in four dimensions and L5 = 2πR = a5N5 in the
fifth dimension.
Using the model described above, we would like to find a region of its parameters space where we
observe the following:

• A separation between the compactification scale and the cut–off

ΛUV � ΛR . (2.2)

This translates into the following relation for the lattice model parameters

a5N5

a4
=

N5

ξ
� 1 , (2.3)

and allows us to rely on the results of the five–dimensional theory when describing the low–
energy physics.

• A separation between the four–dimensional physics and the cut–off
√

σ � ΛUV ; m5 � ΛUV . (2.4)

The above relations translate into

a4
√

σ � 1 ; a4m5 � 1 . (2.5)

If the above relations are true, we expect the long distance physics to be independent of the
regularisation details of the theory.

• A separation between the four–dimensional physics and the compactification scale
√

σ � ΛR ; m5 � ΛR . (2.6)

In terms of the lattice model we have
N5

ξ
a4
√

σ � 1 ;
N5

ξ
a4m5 � 1 . (2.7)

If this holds, higher Kaluza–Klein modes do not enter the relevant dynamics for the low–
energy physics.

• A scalar mass m5 in physical units independent of the cut–off

m2
5

σ
∝ Λ

2
R , (2.8)

as expected from Eq. (1.1).
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3. Phase diagram and results from lattice simulations

Since it is crucial for our purposes to simulate the theory in the correct phase, we briefly discuss
the current understanding of the phase diagram of the SU(2) pure gauge theory in five dimensions
described by the action in Eq. (2.1). Results are available both at γ > 1 [3, 4] and γ ≤ 1 [5].
The isotropic model, where the lattice spacings are the same a4 = a5, has a bulk phase transition
when all the dimensions are equal and large. The bulk line separates a confined phase (σ > 0) that is
connected to the strong coupling regime from a Coulomb–like phase (σ = 0) connected to the weak
coupling. This bulk transition disappears when the lattice size in anyone dimension is decreased
below a critical size, Lc, which is the critical length of the Polyakov loop in that direction. Below Lc

center symmetry is broken. In this case the phase transition becomes a second order one in the same
universality class of the four–dimensional Ising model. We take L5 to be our compactified length
and in Fig. 1 we show the pattern of phase transition for L5 = 4a5 and L5 = 6a5 in the region γ > 1.
The main feature is that at fixed lattice geometry the nature of the phase transition line strongly
depends on the anisotropy: the second order phase transition related to centre breaking merges into
the bulk phase transition when γ . γc. The emerging physical picture tells us that the disappearance
of the bulk phase transition happens as soon as the five–dimensional system compactifies; in other
words, γc defines a critical lattice spacing in the extra dimension a5c that makes 2πR= a5N5 smaller
than the critical L5c = a5cN5. The interesting region for our purposes, is at γ > γc and above the
line of second order phase transition, where the extra dimension is smaller than its critical value
L5 < L5c. We refer to this phase as the dimensionally reduced phase, following Ref. [4].
Since this is the first time that this particular region of the phase space is explored with lattice
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Figure 1: Phase diagram of the five dimensional SU(2) pure gauge lattice model in the (β4,β5) plane for
different values of N5. The bulk phase transition separating a confinement from a Coulomb–like phase
disappears for γ > γc into a physical thermal–like phase transition. The location of this transition changes in
the parameter space as we change N5.
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Figure 2: The plots show the region of the phase diagram that we explored with numerical simulations,
both for N5 = 4 (left) and N5 = 6 (right). The location of the second order phase transition is also shown.
The blue squares are points where the scalar mass a4m5 was reliably extracted, whereas the green circles
represent points where we were able to measure the string tension a4

√
σ .

simulations, we performed a broad scan, aiming primarily at identifying the interesting region. As
a consequence, there are lattices for which we were unable to measure precisely both the string
tension a4

√
σ and the scalar mass a4m5. In Fig. 2, we show all the simulations’ points and at the

same time we identify the ones where either a4m5 or a4
√

σ could not be extracted satisfactorily
from correlation functions of suitable gauge invariant operators.
The emergent pattern seems to suggest that the lattice spacing a4 changes dramatically in these
regions of the phase space. For example, looking at Fig. 2, we notice that the string tension a4

√
σ

can only be measured in a small subset of points; the points closer to the line of second order phase
transition are characterised by spatial Polyakov loops whose mass is too high for a signal to be
extracted reliably. Since the mass of the loops is given by N4a4σ , in this region the lattice spacing
a4 is getting larger in units of the string tension. Following our discussion in Sec. 2, we regard
the region close to the line of phase transition as the one characterised by a small cut–off ΛUV. In
this region, there is not a clear separation between the low–energy physics and the cut–off, and we
expect to observe large discretisation errors. To make things even more interesting, we find the
scalar mass a4m5 to be small in this same region, where a4 is large. In fact, it turns out to be very
difficult to find points in the phase diagram where both

√
σ and m5 are separated from the cut–off

scale at the same time. This results in a scalar mass m5 ∼
√

σ for all the points on which we were
able to reliably measure the string tension. On the other hand, a light scalar does exist very close
to the second order transition line, where a4m5 is small and a4

√
σ is large.

A more quantitative statement can be made by looking at the measured observables as functions of
the bare parameters. For example, our data allow us to study the behaviour of a4

√
σ at fixed value

of β4 as we change β5, and viceversa. The same can be done with a4m5. In the left panel of Fig. 3
we see that the scalar mass approaches the cut–off scale a4m5 & 1 as we move away from the line
of second order phase transition at fixed β4. While the scalar mass becomes smaller as we approach
the critical line, the opposite happens to the string tension, as it is shown in the right panel of Fig. 3.
Each point we have simulated on the phase diagram correspond to a precise location in the space
given by the three energy scales ΛUV, ΛR and m5. We can therefore translate our results at N5 = 4
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Figure 3: (left) The scalar mass in units of the lattice spacing a4m5 as a function of β5 and for four different
values of β4 at N5 = 4. (right) The string tension in units of the lattice spacing a4

√
σ as a function of β5 and

for three different values of β4 at N5 = 6. In both panels the approximate location of the critical region is
shown.

and N5 = 6 into a common set of points (ΛUV,ΛR,m5). This approach allows us to study m5 as a
function of the other two energy scales, instead of the bare parameters. From now on we express
the energies ΛUV and ΛR using their length counterpart, a4

√
σ and R

√
σ respectively. This two

length scales are related to each other by Eq. (2.3) and they are both measured non–perturbatively:
the first is directly measured, whereas the second relies on our interpolation of ξ from Ref. [3].
With our available data, we can explore the behaviour of the scalar mass m5 in the following region
of lattice spacings a4 and compactification radii R

0.15 < a4
√

σ < 0.40 , 0.05 < R
√

σ < 0.12 . (3.1)

The major advantage of interpreting the data in this new physical space is that we can disentan-
gle compactification effects from cut–off effects. Since our values for the lattice spacing usually
correspond to different compactification radii, we look at the combination m5R. This is expected
to be independent on R, while retaining any dependence on the cut–off. If Eq. (1.1) holds, then
m5R should be independent of R and a4 at leading order. In Fig. 4 we plot m5/

√
σ as a function of

a4
√

σ in the left panel, and m5R in the right panel. The observed range for the scalar mass in units
of the string tension is

2 < m5/
√

σ < 10 , (3.2)

whereas the scalar mass in units of the compactification radius is in the range

0.2 < m5R < 0.5 . (3.3)

The latter range is smaller by almost one order of magnitude for same interval of lattice spacings.
This evidence support the observation that the dependence on a4

√
σ is mild.

4. Conclusions

In this work we presented a non–perturbative study of pure SU(2) gauge theory in five dimen-
sions. If the scales of the theory are properly separated, we expect the low-energy dynamics of this

6



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
0
8
6

Scalar mass corrections from compact extra dimensions on the lattice Enrico Rinaldi

theory to describe a four-dimensional gauge theory coupled to a scalar field. We have measured
the mass of the scalar particle in a specific region of the bare parameters space, where we expect
to find the desired separation between physical scales. We have also determined numerically the
four–dimensional lattice spacing in units of the string tension.
The final picture seems to confirm the possibility of effectively describing a four–dimensional
Yang–Mills theory with a scalar adjoint particle in the continuum limit. Even though the search
for a light scalar requires fine tuning in this simple model, we have shown that its mass is only
very mildly affected by the ultra–violet cut–off, whereas it strongly depends on the radius of the
compactified extra dimension. This is entirely compatible with the perturbative result of Eq. (1.1)
and it is the first non–perturbative evidence that the mass of scalar particles coming from a com-
pactification mechanism does not have a quadratic dependence on the cut–off.
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Figure 4: In this plot we show the dependence on the cut–off length given by the lattice spacing a4
√

σ for
two observables: (left) the scalar mass in units on the string tension and (right) the scalar mass in units of the
compactification radius. The grey band includes all points within two standard deviations. When present,
systematic errors are shown with thinner error bars, whereas the thicker ones represent standard deviations.
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