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We perform a lattice calculation of the Schrödinger functional running coupling in SU(2) Yang-
Mills theory with six massless Wilson fermions in the fundamental representation. The aim of
this work is to determine whether the above theory has an infrared fixed point. Due to sensitivity
of the SF renormalized coupling to the tuning of the fermion bare mass we were unable to reliably
extract the running coupling for stronger bare couplings.
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1. Introduction

A SM Higgs adequately accounts for all electroweak measurements (for now). However, it
has a number of theoretical shortcomings, chiefly among them the hierarchy problem. Technicolor
is a promising alternative for electroweak symmetry breaking that avoids the introduction of a
fundamental light scalar particle. In particular, a Technicolor model based on a walking gauge
theory can properly account for the Standard Model fermion masses[1]. Since such a theory is
expected to reside just below the conformal window, it is essential to narrow down the extent of
this window. The goal of this work is to do that for the SU(2) gauge theories with N f fermion
flavors in the fundamental representation. These gauge theories are special in that there is an
enhanced SU(2N f ) global symmetry and it is currently unknown what implications this will have
for technicolor model building.

The asymptotic properties of a field theory are encoded in the RG flow of the couplings. We
are particularly interested in the infrared dynamics of two-color asymptotically free theories. Such
theories have two possible distinct IR behaviors. One possibility is that the β function has no zero
aside from the one that leads to the Gaussian UV fixed point. In this case, the running coupling
will increase until it is sufficiently strong to break chiral symmetry. All fermions will screen out
and the coupling will run as in the pure gauge theory. Alternatively the β function may have an
additional zero leading to an IR fixed point.

There exists a large parameter space of Yang-Mills theories. One can consider different gauge
symmetries and different numbers of fermion flavors transforming under various representations
of the gauge group. Restricting ourselves to N f flavors of fermions transforming under the fun-
damental representation of SU(Nc) and fixing Nc, perturbation theory precisely tells us how many
fermions flavors are required to maintain asymptotic freedom. For two-colors, asymptotic freedom
sets in for N f < 11. At a fixed color, as we lower the number of fermion flavors to just below
where asymptotic freedom sets in, we have a weakly-coupled IR fixed point and therefore an IR
conformal theory [2]. However, for small N f we know that chiral symmetry is broken in the IR and
the theory is confining. Therefore, we expect that there is some critical number of fermion flavors,
Nc

f at which a theory at fixed color transitions from confining to conformal IR behavior and we can
talk of a conformal window, i.e. the range of N f at which the theory is both conformal in IR and
asymptotically free in UV.

The β function can be expanded in perturbation theory. The first two perturbative coefficients
are universal and are given in [2]. The two loop expansion suggests that 5 < Nc

f < 6 and the six
flavor theory has an IRFP around ḡ2

∗ ≈ 144. In perturbation theory, the IRFP at the upper end
of the conformal window is quite weak. As we proceed in decreasing N f , the strength of the
perturbative IRFP grows. Therefore, at the lower end of the conformal window perturbation theory
is likely unreliable and we will need to narrow down the extent of the conformal window using
non-perturbative methods.

The SU(2) gauge theories with N f flavors of fermions in the fundamental representation have
been previously studied. The N f = 6 theory is studied by Bursa et. al. They show evidence that
the N f = 6 theory is consistent with an IRFP 5 < ḡ2

∗ < 6 (in the SF scheme) [3]. Ohki et. al. show
evidence that the N f = 8 theory has a fixed point ḡ2

∗ > 7.5 using a twisted Wilson/Polyakov loop
method in [4]. It is peculiar that the six flavor theory as studied by Bursa et. al. would have a weaker
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fixed point than the eight flavor theory, especially given how strong the six flavor perturbative fixed
point is. Our goal is to thoroughly study the SU(2) gauge theories with fermions in the fundamental
representation. We would like to narrow down the extent of the conformal window for this class
of theories. The unexpected results for the six flavor theory prompted us to begin with it, to see
if we could either confirm or refute the result. Since this work was undertaken, Karavirta et. al.
presented an SU (2) SF study of the N f = 4, 6, and 10 theories. They find no evidence of an IRFP,
inconclusive evidence of an IRFP with ḡ2

∗ > 11, and evidence of an IRFP ḡ2
∗ ≈ 1 in the four, six,

and ten flavor theories respectively [5].

2. Schrödinger Functional Scheme and Step Scaling

The Schrödinger functional (SF) Z allows us to define a non-perturbative renormalized cou-
pling [6]; it is given by a path integral over gauge and fermion fields that reside within a four-
dimensional Euclidean box of spatial extent L with periodic boundary conditions in spatial direc-
tions and Dirichlet boundary conditions in the time direction. We choose gauge boundary con-
ditions [7], U (x,k)|x0=0 = exp

[
−iη a

L τ3
]

and U (x,k)|x0=L = exp
[
−i(π−η) a

L τ3
]
, and fermion

boundary conditions [8], P+ψ|x0=0 = ψ̄P−|x0=0 = P−ψ|x0=L = ψ̄P+|x0=L = 0. The gauge bound-
ary conditions classically induce a constant chromoelectric background field whose strength is
characterized by the dimensionless parameter η . With these boundary conditions we see that the
SF Z (η ,L) =

∫
D [U,ψ, ψ̄]e−S[U,ψ,ψ̄;η ].

The running coupling, in the SF scheme, is defined by,

k
ḡ2 (L)

=
∂

∂η
logZ

∣∣∣∣
η=π/4

=

〈
∂S
∂η

〉
, (2.1)

where k = −24(L/a)2 sin
[
(a/L)2 (π−2η)

]
is chosen so that the renormalized coupling agrees

with the bare coupling at tree-level. Note that the first two perturbative coefficients of the SF
running coupling are exactly the universal coefficients given in [2]. We now have a non-perturbative
definition for a renormalized coupling in a form that is amenable to a lattice calculation.

For this work we used the standard Wilson plaquette gauge action and the Wilson fermion
action. An advantage of working in the SF scheme is that we can evaluate the running coupling
along the mc

(
g2

0
)

curve. mc(g2
0) is defined as the bare mass value that results in a zero PCAC quark

mass [9]. We determined mc for a range of bare coupling on 83× 16 and 163× 32 lattices. We
found mc to be consistent within statistics between the two volumes and consequently interpolated
an mc curve in the m0− g2

0 plane using the smaller volume data. For g2
0 ≤ 0.5, we determine mc

using two-loop perturbation theory [10]. Otherwise, we use the procedure outlined above.
We are interested in investigating the running of the coupling over a large range of scales.

A step scaling analysis enables us to do this in a manner that is computationally feasible [11].
We begin by calculating the SF renormalized coupling over a range of bare couplings and lattice
volumes. Lattice perturbation theory gives g2

0/ḡ2 as an expansion in powers of g2
0. This motivates

an interpolating fit [12],
1

ḡ2
(
g2

0,
L
a

) − 1
g2

0
=

n

∑
i=0

m

∑
j=0

ai, jg2i
0

(a
L

) j
. (2.2)
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(a) (b)

Figure 1: Critical bare mass to reproduce massless fermions. In (a) continuum extrapolation of mc,
2-loop perturbative mc, and values used in calculation shown. In (b) continuum mc shown against
location of bulk phase transition.

This procedure produces a smooth function of the renormalized coupling versus the bare coupling
and inverse lattice volume. We note that it is advantageous to perform one global fit to all data
rather than fitting an interpolating polynomial to each lattice volume. This allows us to interpolate
to additional lattice volumes and smooths out the approach to the continuum limit. In Figure 2a
below we show a bootstrap replication of our renormalized coupling data plotted against a global
fit.

Now we define the discrete step scaling function,

Σ

(
u,

a
L

)
≡ ḡ2

(
g2

0∗ ,
sL
a

)∣∣∣∣
ḡ2(g2

0∗ ,
L
a )=u

, (2.3)

it is the value of the renormalized coupling on a volume of (sL)4 and bare coupling tuned such that
we have a renormalized coupling of u on a lattice of volume L4. We arrive at a continuum step
scaling function,

σ (u) = lim
a
L→0

Σ

(
u,

a
L

)
, (2.4)

by taking the continuum limit of the discrete step scaling function. In practice, these functions
are evaluated using the interpolating polynomial specified in Eq. (2.2) and with the choice s = 2.
We take the continuum limit by evaluating Σ for various values of a/L, taking care to only to use
interpolated values of a/L, and extrapolating to zero.

3. Results

We calculated the renormalized coupling for a range of values of the bare coupling g2
0 and

lattice volumes L/a. Configurations were generated with the Chroma implementation of the HMC
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(a) (b)

Figure 2: In (a), all renormalized coupling data points in a typical bootstrap ensemble plotted in
form 1

g2
0
− 1

ḡ2 against a global interpolating fit to data restricted to g2
0 ≤ 0.5. In (b), a plot of the

discrete beta function derived from fit shown in (a).

(a) (b)

Figure 3: ḡ2 evaluated at g2
0 = 0.6 and 0.8, in (a) and (b) respectively, for various lattice volumes

and fermion bare masses.

algorithm and ∂S
∂η

is evaluated on every configuration [13]. We aimed to acquire on the order of

100 K configurations since ∂S
∂η

is a noisy observable with long autocorrelation times.
Upon studying the mass tuning on additional lattice volumes and obtaining additional statis-

tics, we see that our initial observation of no statistically significant dependence on the lattice
volume was incorrect. We calculated an improved mc curve by fitting our non-perturbatively de-
termined critical bare mass values to an interpolating polynomial mc

(
g2

0,
a
L

)
and extrapolating to

a/L→ 0. In Figure 1a, we show the the values of mc used in our simulations, the two-loop per-
turbative mc curve, and our improved non-perturbative mc curve. It is clear that the values of mc
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used in our evaluations of the renormalized coupling deviate significantly from the appropriate
values. Moreover, Figure 2a, which shows our renormalized coupling measurements versus the
bare coupling, indicates a jump discontinuity at precisely the value of the bare coupling where we
switch from using the perturbatively determined mc to our miss-tuned values of mc. We performed
a global fit to all of our renormalized coupling data that was calculated with a perturbative value
of mc, i.e. for g2

0 ≤ 0.5. The discontinuity in ḡ2, is highlighted by extrapolating our fit to the first
data points which are mistuned in the bare mass. To quantify this we evaluated a limited sample
of renormalized couplings at a variety of bare masses near mc. Figure 3 shows 1/ḡ2 versus m0 for
various lattice volumes and g2

0 = 0.6 and 0.8. This figure demonstrates that ḡ2 is trending in the
correct direction to remove the discontinuity in Figure 2a and that a mistuning of the bare mass by
as little as 4% results in an error in the renormalized coupling that dominates all other sources of
error. Moreover, such an error can easily introduce or obscure an IRFP, especially if the the RG
flow of the running coupling is particularly slow.

In order to guarantee that we can take a continuum limit, we need to ensure that we obtain data
from the weak-coupling side of any spurious lattice phase transition. With this in mind, we scanned
through the bare parameter space and located peaks in the plaquette susceptibility on a L/a= 83×9
lattice. This search indicates a line in the m0−g2

0 plane of first order phase transition that ends at a
critical point at around g2

0 ≈ 2.2. For g2
0 . 2.2, we see crossover behavior. In Figure 1b, we show

the above transition line plotted along with mc(g2
0). Figure 1b indicates that the six flavor massless

fundamental Wilson fermion action has a sensible continuum limit only for g2
0 . 2.2. Therefore, we

expect that we will not be able to examine the running coupling at sufficiently strong bare coupling
with our current action.

Finally, using only data generated with a properly tuned bare mass (g2
0 ≤ 0.5), we study the

continuum running of this theory. Towards this end, we generated 2000 bootstrap ensembles from
our restricted data set and apply the fitting procedure described in the previous section to each indi-
vidual ensemble. A step scaling analysis, using fits like the one shown in Fig 2a, with s = 2, using
a linear extrapolation to the continuum using linearly spaced values between L/a =7 and 10, was
then used to produce curves, for each individual ensemble, of the discrete beta function σ (u)/u.
Figure 2b shows σ (u)/u plotted against one-loop perturbation theory. Each point, with two-sided
errorbars, was obtained via the BCa method [14]. This plot demonstrates, that our methods can
properly reproduce perturbation theory when the bare mass is tuned appropriately.

4. Conclusions and Outlook

We were unable to extract a renormalized coupling flow outside the perturbative region due
to mistuning of the bare fermion mass. We have since properly tuned the bare mass. Figure 2b
demonstrates that our production and analysis applications can reproduce perturbation theory in
a robust manner. We found that these figures do not qualitatively change as we change the fit
parameters and details of the continuum extrapolation.

The RG flow of the running coupling in the six-flavor SU (2) theory is particularly slow and
consequently the renormalized coupling sensitively depends on the bare fermion mass. We empha-
size that in such theories the bare mass must be tuned very carefully. We have since done this for
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the SU (2) six-flavor theory. In order to reliably study the running coupling of this theory we would
simply have to reproduce our data using the correct value of the fermion bare mass.

Studies of the plaquette and plaquette susceptibility indicate the presence of bulk phase tran-
sition along the mc line at g2

0 ≈ 2.2. This effectively limits how strong of a renormalized coupling
that we can investigate with the standard Wilson fermion action. Other investigations into the six-
flavor theory suggest that if there exists an IRFP then it likely resides at a stronger coupling that
can be probed with our current action before encountering a bulk phase transition [5]. Therefore,
while we can regenerate a new data set with an improved estimate of mc, we believe that it would
be a misallocation of resources to pursue this theory without first switching to an improved action
where the bulk phase transition occurs at a stronger coupling.
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