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1. Introduction

Five-dimensional gauge theory is one of the attractive extensions of the Standard Model. As it
is well known, five-dimensional gauge symmetry is expected to keep the Higgs potential finite. And
the Higgs potential might cause spontaneous symmetry breaking [1, 2]. However, five-dimensional
gauge theories are non-renormalizable. Therefore, a finite cut-off is needed. Usually, a finite cut-
off cannot preserve gauge invariance. Only on the lattice it is possible to have a gauge invariant
finite cut-off. The five-dimensional SU(2) gauge theory on the torus has been studied using the
mean-field method in [3, 5]. In this work we study the case of orbifold boundary conditions.

2. Orbifold boundary condition

The definition of the S1/Z2 orbifold for Yang-Mills theories on a five-dimensional Euclidean
lattice was constructed in [4]. For torus boundary condition, the action has a reflection symmetry
and a group conjugation symmetry. The action is invariant under these transformations.

R : z = (xµ ,x5) → z̄ = (xµ ,−x5) (2.1)

AM(z) → αMAM(z̄), αµ = 1, α5 = −1 (2.2)

C : AM(z) → gAM(z)g−1 (2.3)

Then, the orbifold projection identifies the fields under the transformation R ·C :

AM(z) = αMgAM(z̄)g−1 (2.4)

Here we should be careful at the two points x5 = 0,πR, where R is the radius of the fifth dimension.
These two points are boundaries of the orbifold. At the boundaries, the field is projected onto itself.
Thus only the even components of the gauge field i.e. the components which do not change under
R ·C are non-zero. We choose g = −iσ 3 for gauge group SU(2), where σ 3 is the Pauli matrix. It
follows that only the fields A1

5, A2
5 and A3

µ are non-zero on the boundaries. The Higgs complex field
is constructed with A1

5 and A2
5.

3. The mean-field expansion

The mean-field expansion for gauge theories is reviewed in [6]. SU(2) gauge inks U in the
partition function are replaced by N ×N complex matrices V and Lagrange multipliers H :

〈O[U ]〉 =
1
Z

∫
DV

∫
DH O[V ]e−Seff[V,H] (3.1)

Seff = SG[V ]+u(H)+(1/N)Retr{HV} (3.2)

e−u(H) =
∫

DU e(1/N)Retr{UH} , (3.3)

where Retr{UH} = ∑n ∑M Retr{U(n,M)H(n,M)}, n labels the lattice points and M is the five-
dimensional direction index. The mean-field saddle point (or background) is defined by the mini-
mization of the classical effective action in terms of constant fields proportional to the identity in
group space

H −→ H1 ; V −→V 1 ; Seff[V ,H] =minimal . (3.4)
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Corrections are calculated from Gaussian fluctuations around the saddle point solution

H = H +h and V = V + v . (3.5)

We impose a covariant gauge fixing on v. In [7] it was shown that this is equivalent to gauge-fix
the original links U .

Our setup is a SU(2) gauge theory formulated on a LT ×L3 ×N5 Euclidean orbifolded lattice
with anisotropic Wilson plaquette action [8]

Sw[U2,U1] = Sw1[U2]+Sw2[U1]+Sw3[U2,U1] ; U1 ∈U(1), U2 ∈ SU(2). (3.6)

Here we define,

SW1[U2] =
β4

2N ∑
nµ

N5−1

∑
n5=1

∑
ν ,ρ

tr{1−U(n,ν ,ρ)}+
β5

N ∑
nµ

N5−2

∑
n5=1

∑
ν

tr{1−U(n,ν ,5)} (3.7)

SW2[U1] =
β4

4N ∑
nµ

∑
n5=0,N5

∑
ν ,ρ

tr{1−U(n,ν ,ρ)} (3.8)

SW3[U2,U1] =
β5

N ∑
nµ

∑
n5=0,N5−1

∑
ν

tr{1−U(n,ν ,5)}. (3.9)

We use the reality of the trace in SU(2). We parametrize the saddle point solution as H̄(n,µ) =
h̄0(n5)1, V̄ (n,µ) = v̄0(n5)1 for n5 = 0,1, · · · ,N5 (4d links) and H̄(n,5) = h̄0(n5 +1/2)1, V̄ (n,5) =
v̄0(n5 + 1/2)1 for n5 = 0,2, · · · ,N5 − 1 (extra dimensional links) [9]. The phase diagram of the
theory [ Fig. 1 ] is mapped through the values of the mean-field background, where β =

√
β4 ·β5

and γ =
√

β5/β4. There is a confined phase (v̄0(n5) = 0 for all n5), a layered phase (v̄0(n5) ̸= 0 for
n5 = 0,1, · · ·N5, v̄0(n5) = 0 for n5 = 1/2,3/2, · · ·N5 −1/2) and a deconfined phase (v̄0(n5) ̸= 0 for
all n5).
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Figure 1: The mean-field phase diagram for N5 = 8

4. Gauge boson mass and static potentials

We calculate the vector boson mass mv, the scalar mass mH and the static potential of five-
dimensional SU(2) gauge theory on the orbifold. Here we define lines of constant physics by
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keeping

γ = 0.55 and ρ = mv/mH = 0.65 (4.1)

constant. And we define a physical scale rs [10] from the static force F4 through the equation
r2F4(r)|r=rs = s = 0.2.

We construct the gauge boson operator by using the scalar operator which is the projected
Polyakov loop. Fig. 2 is the plot of the gauge boson mass as the function of 1/L. The red points are
the mean-field data. The blue line is the linear fit of these data. The vector boson mass essentially
depends only on L through a4mv ≅ cL/L with cL = 12.15 ≅ 4π . The possible explanation is that
this vector boson is the bound state of two gauge bosons with mass mw = 0. The bound state
mass is mv(L) = 2

√
m2

w +−→p and mv = 4π/L for mw = 0 and −→p = (2π/L,0,0) 1st nonzero lattice
momentum. For L equal infinity, the gauge boson mass is zero or a very small value. It means there
is no spontaneous symmetry breaking.
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Figure 2: The vector boson mass.
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Figure 3: The four-dimensional static force in each four-dimensional hyperplane for N5 = 8 and 12.

Fig. 3 shows the static force F4 = (V4(r + a4)−V4(r))/a4, where V4 is the potential along
four-dimensional hyperplanes. n5 is the coordinate of the hyperplane along the fifth dimension.
The curves are r2F4 on each four-dimensional slice from the boundary to the middle of the bulk.

4



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
0
9
4

The Lattice Mean-Field Approximation of Gauge-Higgs Unification on the Orbifold Kyoko Yoneyama

For the two values of N5 = 8,12, it is very similar at the slices n5 = 0,1,2. They have different
behavior from the slice n5 ≥ 3.

We apply the same analysis which has been applied for the torus case to analyze the potential
in the middle of the bulk. We do a local fit to V4 of the form

V4(r) = µ +σr + c0 log(r)+
c1

r
+

c2

r2 . (4.2)

We find simultaneous plateaux for the fit coefficients in the region 2.4 < r/rs < 3.2 and compare
two different discretization formulae for the coefficients [3, 5]. The left plot of Fig. 4 is the string
tension σ . The string tension has a positive value. It means there is confinement. The right plot of
Fig. 4 is the coefficient c1. It shows that the coefficient c1 is consistent with the universal value of
the Lüscher term −(d −2)π/24 [11, 12] in d = 4. It is one evidence of dimensional reduction.
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Figure 4: The string tension σr2
s and the coefficient c1 of the four-dimensional potential in the middle of

the bulk. The coefficients are fitted locally using discretization 1[3] and discretization 2 [5].

We take an ansatz that it is the four-dimensional Yukawa potential with mass m for the potential
on the boundary.

V4 = −α
e−mr

r
+C, α > 0; F4 = V ′

4 = α
e−mr

r
(m+

1
r
) (4.3)

y = log(r2F4) = log(α)−mr + log(mr +1) (4.4)

y′ = −m+
m

mr +1
(4.5)

Then we numerically compute y′ = (y(r + a4)− y(r))/a4 and see whether we can extract this
Yukawa mass. The left plot of Fig. 5 is y′ and y′ −m/(mr + 1) for each L = 40,100,150,200.
In this plot we find plateaux which correspond to −m . The dotted lines are the values of the boson
mass mv that we have computed before for the given L. There is a nice agreement between the
plateaux values and the dotted lines which represent cL/L and their difference goes to zero as L
goes to infinity (right plot in Fig. 5).

The plot of Fig. 6 is r2F5 where F5 is the force along the extra dimension. The plot shows
that it is compatible with a five-dimensional Coulomb potential V5 ∝ 1/r2 for 4 ≤ r/a5 ≤ 8. At
small distance, the potential has a different shape. This might be related to the potential along the
four-dimensional slices which close to the boundary is different than in the middle of the bulk, as
we discussed above.
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Figure 5: Analysis of the four-dimensional static potential at the boundary. We assume it is a Yukawa
potential.

1 2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

10
−1

r/a
5

r2 F
5

 L=200, γ=0.55, ρ=0.625

 

 
N

5
=12

N
5
=20

Figure 6: The static force along fifth dimension.

5. Conclusion and future works

In this work using a mean-field calculation we see that there is no spontaneous symmetry
breaking on the orbifold because the gauge boson mass goes zero in infinite volume. From the
analysis of the four-dimensional static potential in the middle of the bulk for γ = 0.55, we found
evidence of confinement and dimensional reduction. The four-dimensional static potential at the
boundary is compatible with a four-dimensional Yukawa potential whose Yukawa mass corre-
sponds to the vector boson mass in finite volume.

Our next work is to use the twisted orbifold formalism [13] to study spontaneous symmetry
breaking. We are also doing Monte Carlo simulations. Monte Carlo simulation of SU(2) has been
done on the orbifold for γ = 1 [14] and on the torus [15]. A more realistic model is SU(3) on the
orbifold. Due to the boundary condition, the SU(3) gauge symmetry breaks to SU(2)×U(1) on its
boundaries and then spontaneous symmetry breaking might occur. This would correspond to the
Standard Model.
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