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masses corresponding to pion masses in the range 230-580 MeV. We calculate the mass and the
decay constant of the pseudoscalar meson, and compare our data with the chiral perturbation
theory (ChPT). We find that our data is in good agreement with the sea-quark mass dependence
predicted by the next-to-leading order (NLO) ChPT, and provides a determination of the low-
energy constants l̄3 and l̄4, the pion decay constant, the chiral condensate, and the average up and
down quark mass.
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1. Introduction

Lattice QCD with exact chiral symmetry [1, 2] is an ideal theoretical framework to study
the nonperturbative physics from the first principles of QCD. However, it is rather nontrivial to
perform Monte Carlo simulation such that the chiral symmetry is preserved at a high precision and
all topological sectors are sampled ergodically.

Since 2009, TWQCD Collaboration has been using a GPU cluster (currently constituting of
250 Nvidia GPUs) to simulate unquenched lattice QCD with the optimal domain-wall fermion
(ODWF) [3, 4]. Mathematically, ODWF is a theoretical framework which preserves the chiral
symmetry optimally with a set of analytical weights, {ωs,s = 1, · · · ,Ns}, one for each layer in
the fifth dimension [3]. Thus the artifacts due to the chiral symmetry breaking with finite Ns can
be reduced to the minimum, especially in the chiral regime. The 4-dimensional effective Dirac
operator of massless ODWF is

D = m0[1+ γ5Sopt(Hw)], Sopt(Hw) =
1−∏Ns

s=1 Ts

1+∏Ns
s=1 Ts

, Ts =
1−ωsHw

1+ωsHw
,

which is exactly equal to the Zolotarev optimal rational approximation of the overlap Dirac op-
erator. That is, Sopt(Hw) = HwRZ(Hw), where RZ(Hw) is the optimal rational approximation of
(H2

w)
−1/2 [5, 6].
Recently we have demonstrated that it is feasible to perform a large-scale unquenched QCD

simulation with ODWF, which not only preserves the chiral symmetry to a good precision, but
also samples all topological sectors ergodically [7]. Our result of the topological susceptibility
agrees with the sea-quark mass dependence predicted by the NLO ChPT [8], and provides the first
determination of both the pion decay constant and the chiral condensate simultaneously from the
topological susceptibility. Furthermore, our results of the mass and the decay constant of the pseu-
doscalar meson [9] also turn out in good agreement with the sea-quark mass dependence predicted
by NLO ChPT [10], and from which we obtain the low-energy constants F , Σ, l̄3 and l̄4. With the
low-energy constants, we determine the average up and down quark mass mMS

ud (2 GeV), and the
chiral condensate ΣMS(2 GeV).

In this proceeding, we review our results of the mass and decay constant of the pseudoscalar
meson presented in Ref. [9].

2. Lattice Setup

First, we outline our HMC simulation of 2 flavors QCD with ODWF. Starting from the ODWF
action S = Ψ̄DΨ [3] on the 5D lattice, we separate the even and the odd sites (the so-called even-
odd preconditioning) on the 4D lattice, and rewrite D as

D(mq) = S−1
1

(
1 0

M5DOE
w 1

)(
1 0
0 C

)(
1 M5DEO

w

0 1

)
S−1

2 ,

where mq denotes the bare quark mass, Dw denotes the standard Wilson Dirac operator plus a
negative parameter −m0 (Here m0 = 1.3 in this work.), and DEO/OE

w denotes the part of Dw with
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Figure 1: The lattice spacing a[fm] versus mqa for two flavors QCD with ODWF.

gauge links pointing from odd/even sites to even/odd sites, and

M5 =
[
(4−m0)+ω−1/2(1−L)(1+L)−1ω−1/2

]−1
,

(ω)ss′ = ωsδss′ , L = P+L++P−L−, P± = (1± γ5)/2, L− = (L+)
T ,

(L+)ss′ =

{
δs−1,s′ , 1 < s ≤ Ns

−(mq/2m0)δNs,s′ , s = 1
;

S1 = M5ω−1/2, S2 = (1+L)−1ω−1/2, C = 1−M5DOE
w M5DEO

w .

Since detD = detS−1
1 · detC · detS−1

2 , and S1 and S2 do not depend on the gauge field, we can
just use C for the HMC simulation. After including the Pauli-Villars fields (with mq = 2m0), the
pseudo-fermion action for 2 flavors QCD (mu = md) can be written as

Sp f = ϕ †C†
PV (CC†)−1CPV ϕ , CPV ≡C(2m0). (2.1)

In the HMC simulation, we first generate random noise vector ξ with Gaussian distribution,
then we obtain ϕ =C−1

PV Cξ using the conjugate gradient (CG). With fixed ϕ , the system is evolved
under a fictituous Hamiltonian dynamics, the so-called molecular dynamics (MD). In the MD, we
use the Omelyan integrator [11], and the Sexton-Weingarten multiple-time scale method [12]. The
most time-consuming part in the MD is to compute the vector η = (CC†)−1CPV ϕ with CG, which
is required for the evaluation of the fermion force in the equation of motion for the conjugate
momentum of the gauge field. Here we take advantage of the remarkable floating-point capability
of the Nvidia GPU, and perform the CG with mixed precision [13]. Furthermore, we introduce
an auxillary heavy fermion field with mass mH (mq ≪ mH < 2m0) [14]. For two flavors QCD, the
pseudofermion action (with CH ≡C(mH)) becomes,

SH
p f = ϕ †C†

H(CC†)−1CHϕ +ϕ †
HC†

PV (CHC†
H)

−1CPV ϕH ,

which gives exactly the same fermion determinant of (2.1). Nevertheless, the presence of the
heavy fermion field plays a crucial role in reducing the light fermion force and its fluctuation, thus
diminishes the change of the Hamiltonian in the MD trajactory, and enhances the acceptance rate.
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Figure 2: The residual mass versus the sea quark mass for two flavors QCD with ODWF.

Simulations are carried out for two flavors QCD on a 163 × 32 lattice, for eight sea-quark
masses mqa = 0.01, 0.02, · · · 0.08 respectively. For the quark part, we use ODWF with Ns = 16,
and λmin/λmax = 0.02/6.4. For the gluon part, we use the plaquette action at β = 5.95.

For each sea-quark mass, we perform simulations on 30 GPUs independently, with each GPU
generating 400 trajectories. After discarding 300 trajectories for thermalization, each GPU yields
100 trajectories. Thus, with 30 GPUs running independently, we accumulated total 3000 trajecto-
ries for each sea-quark mass. From the saturation of the binning error of the plaquette, as well as
the evolution of the topological charge, we estimate the autocorrelation time to be around 10 tra-
jectories. Thus we sample one configuration every 10 trajectories, then we have 300 configurations
for each sea-quark mass. With a GPU cluster of 250 GPUs, we can simulate 8 sea-quark masses
concurrently. It takes about 5 months to complete the simulations for the β = 5.95 ensemble.

We determine the lattice spacing by heavy quark potential with Sommer parameter r0 =

0.49 fm. The lattice spacing versus the quark mass is plotted in Fig. 1. Using the linear fit, we ob-
tain the lattice spacing in the chiral limit, a = 0.1032(2) fm, which gives a−1 = 1.911(4)(6) GeV,
where the systematic error is estimated with the uncertainty of r0.

For the computation of the valence quark propagator of the 4D effective Dirac operator of
ODWF, two methods have been presented in Ref. [15]. In this work, we compute the valence
quark propagator with the point source at the origin, and with parameters exactly the same as those
of the sea-quarks.

To measure the chiral symmetry breaking due to finite Ns, we compute the residual mass

mres =

⟨
∑x ⟨J5(x)q̄(0)γ5q(0)⟩

∑x ⟨q̄(x)γ5q(x)q̄(0)γ5q(0)⟩

⟩
{U}

=

⟨
tr(Dc +mq)

−1
0,0

tr[(D†
c +mq)(Dc +mq)]

−1
0,0

⟩
{U}

−mq, (2.2)

where J5(x) = ψ̄x,nP−ψx,n+1 − ψ̄x,n+1P+ψx,n with n ≡ Ns/2, which denotes the chiral density at the
central layer in the 5-th dimension, (Dc +mq)

−1 denotes the valence quark propagator with mq

equal to the sea-quark mass, tr denotes the trace running over the color and Dirac indices, and the
subscript {U} denotes averaging over an ensemble of gauge configurations. It turns out that, after
averaging over an ensemble of a few hundreds of independent gauge configurations, mres seems to
be insensitive to the location of the origin xµ = (0,0,0,0). Thus (2.2) gives a reliable estimate of
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the chiral symmetry breaking due to finite Ns. In Fig. 2, we plot the residual mass versus the sea
quark mass. Using the linear fit, we obtain the residual mass in the chiral limit, mresa= 0.00040(4),
less than 5% of the lightest sea quark mass. Thus we confirm that the chiral symmetry is preserved
to a good precision in our simulation. In the following, it is understood that each bare sea-quark
mass mq is corrected by its residual mass, i.e., mq → mq +mres.

3. Results

Using the valence quark propgator with quark mass equal to the sea-quark mass, we compute
the time-correlation function of the pseudoscalar interpolator

Cπ(t) = ∑⃗
x

tr{γ5(Dc +mq)
−1
0,xγ5(Dc +mq)

−1
x,0},

where the trace runs over the Dirac and color space. Then the ensemble average ⟨Cπ(t)⟩ of each
mq is fitted to the formula (Z/(2Mπa))[e−Mπ at + e−Mπ a(T−t)] to extract the pion mass Mπa and the
decay constant Fπa = (mqa

√
2Z)/(M2

πa2).
In Fig. 3, we plot M2

π/mq and Fπ versus mq respectively. Here we have made the correction
for the finite volume effect using the estimate within ChPT calculated up to O(M4

π/(4πFπ)
4) [16],

since our simulation is done on a finite volume lattice with MπL ∼ 2.0 for the lightest sea quark,
and its finite volume effect cannot be neglected.

Taking into account of the correlation between M2
π/mq and Fπ for the same sea-quark mass,

we fit our data to the formulas of NLO ChPT [10]

M2
π

mq
=

2Σ
F2

[
1+
(

Σmq

16π2F4

)
ln
(

2Σmq

F2Λ2
3

)]
, (3.1)

Fπ = F
[

1−
(

Σmq

8π2F4

)
ln
(

2Σmq

F2Λ2
4

)]
, (3.2)

where Λ3 and Λ4 are related to the low energy constants l̄3 and l̄4 as follows.

l̄3 = ln

(
Λ2

3

m2
π±

)
, l̄4 = ln

(
Λ2

4

m2
π±

)
, mπ± = 0.140 GeV.

The strategy of our data fitting is to search for the values of the parameters Σ, F , Λ3 and Λ4

such that they minimize

χ2 =
8

∑
i=1

V T
i C−1

i Vi, Vi =

(
(M2

π/mq)i − (M2
π/mq)

ChPT
i

(Fπ)i − (Fπ)
ChPT
i

)
,

where Ci is the 2×2 covariance matrix for M2
π/mq and Fπ with the same sea-quark mass, and the

matrix elements of Ci are estimated using the binning method followed by the jackknife.
For eight sea-quark masses corresponding to pion masses in the range 230−580 MeV, our fit

gives

Σ = [0.21855(75)(50) GeV]3, F = 0.08339(35)(38) GeV,

l̄3 = 4.149(35)(14), l̄4 = 4.582(17)(20),
(3.3)
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Figure 3: Physical results of 2 flavors QCD with ODWF (a) M2
π/mq, and (b) Fπ . The solid lines are the

simultaneous fits to the NLO ChPT, for eight sea-quark masses.

where the systematic errors are estimated by varying the number of data points from 8 (Mπ ≤ 580
MeV) to 5 (Mπ ≤ 480 MeV).

With the fitted parameters, we use the physical ratio(
Mπ

Fπ

)phys

=
0.135 GeV
0.093 GeV

= 1.45

as the input, and solve for Mπ(mq)/Fπ(mq) = 1.45, to obtain the physical bare quark mass mphys
q =

0.00505(13) GeV. From (3.2) and (3.1), we obtain the pion decay constant and the pion mass at the
physical point,

Fπ = 0.090(4)(2) GeV, (3.4)

Mπ = 0.130(5)(3) GeV. (3.5)

Since we have used the physical ratio 1.45 as the input, in principle, we can only regard either (3.4)
or (3.5) as our predicted physical result.

In order to convert the chiral condensate Σ and the average mu and md to those in the MS
scheme, we calculate the renormalization factor ZMS

s (2 GeV) using the non-perturbative renormal-
ization technique through the RI/MOM scheme [17], which gives ZMS

s (2 GeV) = 1.244(18)(39).
Then the values of Σ and the average of mu and md are transcribed to

ΣMS(2 GeV) = [235(8)(4) MeV]3, (3.6)

mMS
ud (2 GeV) = 4.06(10)(12) MeV. (3.7)

Our results of the chiral condensate (3.6) and the pion decay constant (3.4) are in good agreement
with our recent results extracted from the topological susceptibility [7]. Since our calculation is
done at a single lattice spacing, the discretization error cannot be quantified reliably, but we do not
expect much larger error because our lattice action is free from O(a) discretization effects.
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To compare our results with those obtained by other lattice groups, we rely on the recent
review [18]. In general, our results of the SU(2) low-energy constants, the chiral condensate and
the average up and down quark mass are compatible with those obtained by other lattice groups.

4. Concluding remark

Our results of the mass and the decay constant of the pseudoscalar meson are in good agree-
ment with the sea-quark mass dependence predicted by the next-to-leading order (NLO) ChPT, and
provide a determination of the low-energy constants l̄3 and l̄4, the pion decay constant, the chiral
condensate, and the average up and down quark mass. Together with our recent result of the topo-
logical susceptibility [7], these suggest that the nonperturbative chiral dynamics of the sea quarks
are well under control in our HMC simulations. Moreover, this also implies that it is feasible to
perform large-scale simulations of unquenched lattice QCD with ODWF, which not only preserve
the chiral symmetry to a high precision, but also sample all topological sectors ergodically. This
provides a new strategy to tackle QCD nonperturbatively from the first principles.

This work is supported in part by the National Science Council (Nos. NSC99-2112-M-002-
012-MY3, NSC99-2112-M-001-014-MY3) and NTU-CQSE (No. 10R80914-4). We also thank
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