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In this talk I have discussed an investigation of factorization of chiral logs as predicted by hard
pion chiral perturbation theory from the point of view of standard chiral perturbation theory and
dispersion relations. Using as example the pion form factors we were able to explain factorization
at the two loop level and even to all orders if one considers only elastic contributions. Inelastic
contributions, on the other hand, do not respect factorization, as briefly discussed here.
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Hard pion χPT Gilberto Colangelo

1. Introduction

Some time ago Flynn and Sachrajda [1] made the interesting observation that, after reinter-
preting the effective Lagrangian describing the decay of a heavy meson (the K in that case) into a
pion and a lepton-neutrino pair, one can unambiguously predict the coefficient of the leading chiral
log, in all possible kinematical configurations. This is a nontrivial statement, because it implies
that some chiral properties emerge even outside the region of applicability of chiral perturbation
theory (χPT ). Subsequently, in a series of papers by Bijnens and collaborators [2, 3, 4] it has been
claimed that the calculation of such a chiral log is possible in more general processes in which the
pion is hard. This approach has been referred to as hard pion chiral perturbation theory (HπχPT).

A particularly clear example of what such a theory is able to predict has been provided in
[4] where it has been shown that the scalar and vector form factors of the pion, which have been
calculated to two loops in χPT [5], factorize in the limit M2

π � s:

FV,S(s) = FV,S(s)(1+αV,SL)+O(M2) , (1.1)

where L stands for the chiral log, defined as L = M2/(4πF)2 lnM2/µ2. M2 is proportional to the
average up and down quark masses m̂, M2 = 2Bm̂ and F is the decay constant in the chiral limit:

M2
π = M2 +O(M4) , Fπ = F +O(M2) . (1.2)

FV,S(s) are the form factors in the chiral limit.1 Bijnens and Jemos provide arguments in support
of this factorization property [4]. A detailed analytical understanding, however, is still lacking.
In this talk we gave a preliminary account of our analysis which investigates in detail how this
factorization property emerges. A complete discussion will appear soon [6].

2. Dispersive representation of the pion form factors and leading chiral logs

Consider the vector and scalar pion form factors, respectively FV (s) and FS(s) and denote them
by the common symbol F(s) (unless it is necessary to distinguish them). We normalize the scalar
form factor such that FS(0) = 1 — for the vector form factor this condition need not be imposed as
it follows from current conservation. Both these form factors are analytic functions in the cut plane
[4M2

π ,∞) and satisfy a dispersion relation of the form

F(s) = 1+
s
π

∫
∞

4M2
π

ds′
ImF(s′)
s′(s′− s)

=: 1+d(s) . (2.1)

Moreover in the elastic region unitarity relates the imaginary part of the form factor to the form
factor itself and the ππ partial wave with the same quantum numbers:

ImF(s) = σ(s)F(s)t∗(s) σ(s) =

√
1− 4M2

π

s
. (2.2)

We observe that since t(s) starts at O(p2), knowing the form factor up to a given chiral order
means to know its imaginary part — and if one is able to perform the dispersive integral also its

1We denote quantities in the chiral limit by a bar, X = limMπ→0 X .
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Hard pion χPT Gilberto Colangelo

real part — at one order higher. We will now address the question, how chiral logs can arise from
the dispersive integral.

The first possible mechanism is that these are generated by the integration region around s =
4M2

π — to investigate this we must analyze the behaviour of the integrand around threshold. The
form factor takes a constant value, which differs from the value at s = 0 by O(M2):

F(4M2
π) = 1+O(M2) , (2.3)

whereas the ππ amplitude t(s) either vanishes or goes to a constant, depending on the angular
momentum `

tI
`(s)' q2` (aI

`+bI
`q

2 +O(q4)
)

, (2.4)

where q2 = s/4−M2
π . At O(p2) in the chiral counting both aI

0 and bI
0 are nonzero for both isospin

channels2. In the P wave a1
1 starts at O(p2) whereas b1

1 vanishes at this order. In summary:

aI
0 = O(M2/F2) , a1

1 ∼ bI
0 = O(1/F2) . (2.5)

Let us consider the more general case t(s)' a+bq2 +O(q4) and split the dispersive integral into
two pieces

d(s) = a
s
π

∫
∞

4M2
π

ds′
σ(s′)F(s′)
s′(s′− s)

+
s
π

∫
∞

4M2
π

ds′
σ(s′)F(s′) [t∗(s′)−a]

s′(s′− s)
=: d1(s)+d2(s) . (2.6)

We write the first as

d1(s) = 16πF(4M2
π)aJ̄(s)+a

s
π

∫
∞

4M2
π

ds′
σ(s′)

[
F(s′)−F(4M2

π)
]

s′(s′− s)
. (2.7)

In the limit y := M2
π/s� 1, J̄ admits the expansion

J̄(s)=
1

8π2

[
1+

ln(−y)
2

+ y(1− ln(−y))+O(y2)

]
(2.8)

whereas in the second integral, the presence of chiral logs is determined by the behaviour around
s = 4M2

π . The expansion for y� 1 of the second term in (2.7), after cutting off the integral gives:

I1(s,Λ2) :=
s

16π2

∫
Λ2

4M2
π

ds′
σ(s′)

(
s′−4M2

π

)
s′(s′− s)

= I1(s,Λ2)− 6M2
π

16π2 ln(−y)+O(M2
π) . (2.9)

However, since a = O(M2), the chiral log arising from this integral is suppressed by one power of
M2 and is beyond the accuracy of the present analysis. Moreover the integration region from Λ2 to
infinity cannot generate logs. We conclude that

d1(s) =
a
π

ln(−y)+O(M2) , (2.10)

where we have also used (2.3). The presence of chiral logs in d2(s) is also determined by the inte-
gral I1(s,Λ2) we just introduced. Indeed by expanding both F(s) and (t∗(s)−a) around threshold
we obtain

d2(s) = d2(s)−
3b
2π

M2 ln(−y)+O(M2) . (2.11)

2Higher coefficients do not matter for the calculation of the chiral log, see [6].
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Hard pion χPT Gilberto Colangelo

Putting d1(s) and d2(s) together we obtain

d(s) = d(s)+16πF2
(

a
M2 −

3b
2

)
L+O(M2) . (2.12)

For the scalar form factor the relevant parameters are a = a0
0 and b = b0

0 which are given by

a0
0 =

7M2

32πF2 +O(M4) , b0
0 =

1
4πF2 +O(M2) , (2.13)

leading to

αS = 16πF2
(

a0
0

M2 −
3b0

0
2

)
=−5

2
, (2.14)

which reproduces the known result [5, 4]. For the vector form factor we must instead use the
parameters: a = 0, and b = a1

1 = 1/(24πF2)+O(M2), which leads to

αV = 16πF2
(
−3a1

1
2

)
=−1 , (2.15)

also in agreement with the explicit calculation [5, 4].

2.1 The form factor at O(p2) in the chiral limit

As we have seen above the part of the dispersive integral denoted by d1(s) vanishes in the
chiral limit, whereas d2(s) does not. It is useful for the subsequent discussion to determine the
leading order of d2(s) in the chiral expansion in the chiral limit [7]. To do this we have to find a
function which is analytic in the cut plane [0,∞) and which has as imaginary part along the cut

lim
M→0

σ(s)F(0)(s)
[
t(2)(s)−a

]
=

b
4

s . (2.16)

Such a function is easily found:

d
(2)
(s) = s

b
4π

ln
Λ2

2
−s

, (2.17)

with Λ2 an unknown scale. The explicit expressions in the case of the scalar and vector form factors
read

d
(2)
S (s) =

s
16π2F2

[
1+ ln

µ2

−s
+16π

2`r
4(µ)

]
d
(2)
V (s) =

s
16π2F2

[
5
18

+
1
6

ln
µ2

−s
−16π

2`r
6(µ)

]
. (2.18)

The coefficients of the logs are indeed correctly reproduced by substituting b = b0
0 = 1/(4πF2)

for the scalar form factor and b = a1
1 = 1/(24πF2) for the vector one. The scale Λ2 for the scalar

(vector) form factor is related to the low energy constant `r
4(µ) (`r

6(µ)).
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2.2 Leading chiral logs beyond O(p2)

We must now discuss whether and how leading chiral logs can be generated at higher chiral
orders — more specifically, we are interested in terms proportional to sn−1L at order p2n. The
discussion above made it clear that the behaviour of the integrand around the lower limit of inte-
gration may only generate a chiral log at O(p2): a term proportional to L but constant in s. There
is a second mechanism, however, by which chiral logs may arise from the dispersive integrals at
higher orders, namely if the integrand itself contains a chiral log.

Let us consider the dispersion relation at O(p4) (i.e. contributions to the form factor at the
two-loop level). At this order the integrand contains two contributions

ImF(4)(s) = σ(s)
[
t(4)∗(s)+F(2)(s)t(2)(s)

]
(2.19)

each of which may contain chiral logs. We consider first the latter term: t(2)(s) is the tree-level
contribution to the ππ scattering amplitude and contains no chiral logs, whereas F(2)(s) does.
Expanding this term in M2/s we can write it as

F(2)(s)t(2)(s) =
(

F(2)
(s)+αL

)
t(2)(s)+O(M2) . (2.20)

We can similarly expand t(4)(s) and write it as

t(4)(s) = t(4)(s)+(β0M2 +β1s)L+O(M2) . (2.21)

The term proportional to β0 generates in F(4)(s) a chiral log suppressed by one order of M2 which
is beyond the accuracy we aim at — β1 is the term which would be of interest to us, but as we
are going to show below this vanishes. We therefore conclude that the form factor at O(p4) in the
chiral limit, d

(4)
(s) is given by the solution of the dispersion relation with discontinuity

ImF(4)
(s) =

[
t(4)∗(s)+F(2)

(s)t(2)(s)
]

. (2.22)

The only term containing the chiral log has as coefficient exactly the absorptive part of the form
factor at one chiral order lower, t(2)(s) = b/4s. As we have discussed above the solution of the
corresponding dispersion relation reads

s
b

4π
ln

Λ2
X

−s
(2.23)

with ΛX an unknown energy scale. We argue, however, that this has to coincide with Λ2 introduced
in Eq. (2.17), for details, see [6]. We conclude that at this order we can write the form factor as

F(s) =
(

1+d
(2)
(s)
)
(1+αL)+d

(4)
(s)+O(M2)+O(p6) , (2.24)

i.e. in factorized form, as predicted by HπχPT.
The same reasoning can be repeated in exactly the same way order by order. At every new step

the dangerous terms for factorization are the contributions to ImF(2n) arising from the ππ scattering
amplitude at the same order. A chiral log of the form sn−1L in t(2n) would destroy factorization. If
these are absent, however, factorization of the leading single chiral log in the limit M2� s� Λ2

is respected.
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3. Chiral logs in the ππ scattering amplitude

In order to complete our argument we now turn our attention to the ππ partial waves and their
dispersive representation as proposed by Roy [8]:

tI
`(s) = kI

`(s)+
2

∑
I′=0

∞

∑
`′=0

∫
∞

4M2
π

ds′KII′
``′ (s,s

′)Im tI′
`′ (s
′) , (3.1)

where I and ` denote isospin and angular momentum respectively and kI
`(s) is the partial wave

projection of the subtraction term given by:

k0
0(s) = a0

0 +
s−4M2

π

12M2
π

(2a0
0−5a2

0) , (3.2)

and similarly for the other S and P waves. To analyse the possible sources for chiral logs one splits
Eq.(3.1) into the S- and P-wave contributions, the higher waves and the integral from a cut-off to
infinity:

tI
`(s) = kI

`(s)+ tI
`(s)SP +dI

`(s) , (3.3)

where

tI
`(s)SP =

2

∑
I′=0

2

∑
`′=0

∫
Λ2

4M2
π

ds′KII′
``′ (s,s

′)Im tI′
`′ (s
′) , (3.4)

and the so called driving terms dI
`(s) contain all the rest [9]. In the elastic region unitarity relates

the imaginary part of the ππ partial wave to its modulus squared:

ImtI
l (s) = σ(s)|tI

l (s)|2 . (3.5)

These amplitudes can be expanded around threshold, as in Eq. (2.4): in order to see what integrals
can generate chiral logs the same analysis we did for the form factors can be repeated here. Only
the integral over the S- and P-waves may generate chiral logs:

tI
`(s)SP =

∫
Λ2

4M2
π

ds′KI0
`0(s,s

′)
[
(a0

0)
2 +2a0

0b0
0q′2 +(b0

0)
2q′4 + . . .

]
(3.6)

+
∫

Λ2

4M2
π

ds′KI1
`1(s,s

′)
[
16(a1

1)
2q′4 + . . .

]
+
∫

Λ2

4M2
π

ds′KI2
`0(s,s

′)
[
(a2

0)
2 +2a2

0b2
0q′2 +(b2

0)
2q′4 + . . .

]
,

where q′2 := s′/4−M2
π . The partial wave amplitudes needed for the form factors are t0

0(s) for FS(s)
and t1

1(s) for FV (s). The kernels are known [9]. The result reads

t0
0(s)SP = 6t1

1(s)SP =
s
6

{
I0
[
2a0

0b0
0−5a2

0b2
0
]
+

1
8

I1
[
2(b0

0)
2 +27(a1

1)
2−5(b2

0)
2]}+ . . . (3.7)

where

In(s,Λ2) :=
s

16π2

∫
Λ2

4M2
ds′

σ(s′)(s′−4M2)n

s′(s′− s)
, (3.8)
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Hard pion χPT Gilberto Colangelo

and the ellipsis stands for all the terms which cannot generate the chiral logs of interest. We find
that for both partial waves the coefficient of the chiral log is proportional to

[
2a0

0b0
0−5a2

0b2
0
]
−3M2

4
[
2(b0

0)
2 +27(a1

1)
2−5(b2

0)
2] . (3.9)

To get the leading chiral log we need to input the threshold parameters at leading order in χPT .
The explicit calculation shows that, although the individual terms in this combination are of order
M2, they cancel and leave as leading contribution something of O(M4) and therefore beyond the
accuracy of this calculation.

Neither the driving terms nor higher partial waves generate chiral logs of the order considered
here. The subtraction term could in principle contain chiral logs, but the combination of scattering
lengths 2a0

0−5a2
0, which determines the coefficient β1, does not have any [10].

3.1 Higher order ππ partial waves

To complete our argument we need to show that no chiral logs of the order we are interested
in may appear in the integrands at any order. Since the ππ scattering amplitude at tree level and
zero momentum vanishes linearly in the chiral limit it does not contain terms proportional to L,
therefore

t(2)(s) = O(M2)+O(s) . (3.10)

From unitarity, by applying chiral counting to Eq. (3.5) it follows that

Imt(4) = σ(s)|t(2)|2 . (3.11)

Hence also the imaginary part of the partial wave to order p4 contains no terms proportional to L.
Using Roy equations (3.3) we can get the corresponding partial wave t(4) from the imaginary part.
Since the explicit calculation shows that neither the integration nor the subtraction term produce
any unwanted chiral logs, the partial wave to next-to-leading order has no terms proportional to
sL. By induction one may reach the same conclusion to all chiral orders: for the partial waves
expanded for M2� s:

t(2n)(s)= t̄(2n)(s)+L
n−1

∑
k=0

βkskM2(n−1−k)+O(M2) (3.12)

the coefficient βn−1 vanishes to all orders.

4. Conclusions and a comment on inelastic contributions

In this talk we have shown that in the limit M2
π � s, the leading chiral log in the pion form

factors factorizes to all orders in the chiral expansion if one considers only elastic contributions
both in the form factor and in the ππ scattering amplitude. The proof is based on the dispersive
representation of the form factors and crucially relies on the vanishing of the coefficients of the
leading chiral logs in the ππ scattering amplitude. At O(p4) these coefficients are shown to be zero
by an explicit calculation — by induction we have shown that these vanish at all higher orders.
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In all this discussion we have always put inelastic contributions aside. These show up in the
form factor at three-loop order (a dispersive contribution with a four-pion intermediate state). At
first one might think that the four-particle phase space would give enough suppression in the thresh-
old region so that chiral logs would not be generated. However, somewhat surprisingly we find that
these inelastic contributions do generate chiral logs and that these violate factorization. Notice also
that even if the chiral logs at this order were zero, since inelastic channels do give a contribution
in the chiral limit, the violation of factorization would happen at one order higher (unless a miracle
totally unrelated to the mechanism discussed here would happen). Inelastic channels had not been
mentioned in the talk but will be discussed in detail in a subsequent publication [6].

We conclude that the factorization of chiral logs postulated in the HπχPT literature is only
valid in an approximate sense: it holds only for a subclass of diagrams, and there are contributions
which do not respect it, starting at three loops in χPT .

Acknowledgements

The Albert Einstein Center for Fundamental Physics is supported by the “Innovations- und
Kooperationsprojekt C-13” of the “Schweizerische Universitätskonferenz SUK/CRUS”. Partial fi-
nancial support by the Helmholtz Association through the virtual institute “Spin and strong QCD”
(VH-VI-231) and by the Swiss National Science Foundation is gratefully acknowledged. JTC ac-
knowledges a MEC FPU fellowship (Spain).

References

[1] RBC Collaboration, UKQCD Collaboration Collaboration, J. Flynn and C. Sachrajda, SU(2) chiral
perturbation theory for K(l3) decay amplitudes, Nucl.Phys. B812 (2009) 64–80,
[arXiv:0809.1229].

[2] J. Bijnens and A. Celis, K→ ππ Decays in SU(2) Chiral Perturbation Theory, Phys.Lett. B680
(2009) 466–470, [arXiv:0906.0302].

[3] J. Bijnens and I. Jemos, Hard Pion Chiral Perturbation Theory for B→ π and D→ π Formfactors,
Nucl.Phys. B840 (2010) 54–66, [arXiv:1006.1197].

[4] J. Bijnens and I. Jemos, Vector Formfactors in Hard Pion Chiral Perturbation Theory, Nucl. Phys.
B846 (2011) 145–166, [arXiv:1011.6531].

[5] J. Bijnens, G. Colangelo, and P. Talavera, The vector and scalar form factors of the pion to two loops,
JHEP 05 (1998) 014, [hep-ph/9805389].

[6] G. Colangelo, M. Procura, L. Rothen, R. Stucki, and J. Tarrús Castellà. in preparation.

[7] M. Bissegger and A. Fuhrer, Chiral logarithms to five loops, Phys.Lett. B646 (2007) 72–79,
[hep-ph/0612096].

[8] S. Roy, Exact integral equation for pion-pion scattering involving only physical region partial waves,
Phys. Lett. B 36 (1971) 353.

[9] B. Ananthanarayan, G. Colangelo, J. Gasser, and H. Leutwyler, Roy equation analysis of ππ

scattering, Phys.Rept. 353 (2001) 207–279, [hep-ph/0005297].

[10] J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Ann. Phys. 158 (1984) 142.

8

http://xxx.lanl.gov/abs/0809.1229
http://xxx.lanl.gov/abs/0906.0302
http://xxx.lanl.gov/abs/1006.1197
http://xxx.lanl.gov/abs/1011.6531
http://xxx.lanl.gov/abs/hep-ph/9805389
http://xxx.lanl.gov/abs/hep-ph/0612096
http://xxx.lanl.gov/abs/hep-ph/0005297

