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1. Introduction

In [1], Adams introduced a new definition of topological charge for lattice gauge fields based
on the spectral flow of a hermitian operator related to the staggered Dirac operator. Some numerical
results were obtained there for synthetic configurations in the 2D U(1) model.

Here we present preliminary1 numerical results in realistic, 4D pure gaugeSU(3) configura-
tions, confirming the good properties of Adams’ definition, and the agreement of the index calcu-
lated with the new definition and by counting the number of low-lying modes of high chirality.

2. Definition of the topological charge

The hermitian operator introduced in [1] is defined by

Hst(m) = iDst −mΓ5 (2.1)

whereD is the massless staggered Dirac operator andΓ5 is the taste-singlet staggeredγ5 [3]. This
operator is hermitian, and we can study its spectral flow,λ (m). The would-be zero modes ofDst

are now identified with the eigenmodes for which the corresponding eigenvalue flow λ (m) crosses
zero at low values ofm, and the chirality of any such mode equals (with our conventions) the sign
of the slope of the crossing [1].

For the most part we work with the highly improved Dirac operator (HISQ) [4], although
for comparison we will also show some results corresponding to the unimproved (1-link) Dirac
operator.

To compare with previous work, we also calculate the low-lying modes of the HISQ Dirac
operator atm = 0, and identify the would-be zero modes with the high taste-singlet chirality ones
[5, 6].

3. Results

For our numerical calculations we use configurations from an ensemble oftree-level Symanzik
and tadpole improved quenched QCD with a lattice spacing of approximately 0.077 fm [5].

The operatorHst(m) is hermitian, and its low-lying eigenmodes are easily calculated numeri-
cally with standard methods. Its spectrum has the exact symmetryλ (m)↔−λ (−m), therefore we
only show results form < 0. An equal number of crossings, with identical slope, will be present
for m > 0.

We show in figures 1, 2 and 3 the results obtained for three configurationscorresponding (a
posteriori), to topological charge 0, -1, and 2. We can clearly see the agreement between both
definitions of the topological charge, with the expected 4Q high-chirality modes, and 4Q crossings
at low m.

In order for the topological charge to be well defined by the spectral flow, it is necessary
that the crossings at low values of the mass and other possible crossings at larger values of the
mass are well separated. We show in figure 4 the spectral flow for the samegauge configuration

1More complete results will be presented in [2].
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Figure 1: Top left figure: taste-singlet chirality for the low-lying modes of the HISQ Dirac operator (only
half of the modes are shown, as the other half is exactly degenerate, due to an exact symmetry of the
Dirac action.) Top right and bottom figures: spectral flow forthe low-lying modes of the corresponding
hermitian operatorHst(m), for various ranges ofm (we only show the rangem< 0, due to the exact symmetry
λ (m)↔−λ (−m)). This is for a gauge configuration withQ = 0.

corresponding toQ = −1, but with a much larger mass range. We see that there is no sign of any
other crossing until a very large value ofm, of orderO(200). We conclude that, at least at this
lattice spacing and for the HISQ Dirac operator, there is a very good separation between low and
high mass crossings.

In figure 5 we compare the spectral flow coming from the HISQ and the 1-linkDirac operators,
on the same gauge field configuration, of topological charge -1. Both flows agree on the value of
the topological charge of the configuration, but the crossings corresponding to HISQ take place at a
much smaller value ofm. This is according to expectations, because in the continuum limit the only
possible crossing is atm = 0, and we expect the HISQ operator to be much closer to the continuum
than the 1-link operator. Another manifestation of this is the fact that the four-fold degeneracy of
the continuum theory is also much more closely approximated by the HISQ action,due to its much
reduced taste-symmetry breaking.

The definition of topological charge through the identification of the high-chirality, low-lying
modes of the Dirac operator works well in practice, and any ambiguities are expected to vanish in
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Figure 2: Top left figure: taste-singlet chirality for the low-lying modes of the HISQ Dirac operator. Top
right and bottom figures: spectral flow for the low-lying modes of the corresponding hermitian operator
Hst(m), for various ranges ofm. This is for a gauge configuration withQ =−1.

the continuum limit asa2, wherea denotes the lattice spacing. Nevertheless, at finite lattice spacing
there are a few configurations for which the classification in a topological sector is not clear-cut
[5]. In figure 6 we show the chiralities and spectral flow for one of thoseconfigurations. The
high-chirality criterion would indeed be ambiguous applied to this configuration. The spectral flow
criterion is always well-defined2, and would assign a topological charge 0 to this configuration. We
can see, however, that this is the result of having pairs of crossings withopposite slopes, instead of
not having any crossing (as is the case in figure 1 for the configuration with Q = 0).

4. Conclusions and Outlook

We have presented preliminary numerical evidence that Adams’ definition of the topological
charge using the staggered Dirac operator works as expected for realistic (quenched)SU(3) gauge
fields. The crossings corresponding to low and high-lying modes are wellseparated, and there-
fore the topological charge of a configuration is unambiguously defined,even in cases which are
ambiguous using other definitions.

2At least as long as there is a clear-cut separation between low-modes and high-modes.
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Figure 3: Top left figure: taste-singlet chirality for the low-lying modes of the HISQ Dirac operator. Top
right and bottom figures: spectral flow for the low-lying modes of the corresponding hermitian operator
Hst(m), for various ranges ofm. This is for a gauge configuration withQ =+2.

It would be interesting to compare the staggered Dirac spectral flow with the usual Wilson
Dirac spectral flow on the same gauge configurations, as well as studyingthe dependence on the
lattice spacing [2].

Inspired by this definition of the spectral flow, one can define an overlapoperator starting with
a staggered kernel, instead of the usual Wilson one [7], producing a chiral operator representing
two tastes of fermions. A similar construction can be carried out to further reduce the degeneracy
and produce a one-flavour overlap operator [8]. The question now iswhether this construction is
numerically advantageous as compared with the usual overlap construction. Preliminary results are
presented in [9].
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Figure 4: Spectral flow corresponding to the HISQ Dirac operator on a large mass range, for a gauge
configuration withQ =−1.
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Figure 5: The spectral flow corresponding to the HISQ and the 1-link Dirac operators, on the same gauge
field configuration.
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Figure 6: Chiralities and HISQ spectral flow for a configuration with anambiguous topological charge, as
determined by the chiralities.
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