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Recently, random matrix theory predictions for the disttitn of low-lying Dirac operator eigen-
values have been extended to include lattice effects fdr Stmiggered and Wilson fermions. We
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the low-lying spectrum disappear in the continuum limiteapected from staggered RMT.
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1. Chiral perturbation theory including lattice artifacts

In recent years, chiral perturbation theoXP(T) has been extended to include lattice artifacts
for both staggered [1] and Wilson fermions [2]. In this talk, we will be amed only with the
e-regime of XPT where the zero momentum modes dominate. Thus, we consider only the zero
momentum part of the chiral Lagrangian

1
£ =—ZmETr (U +U7) +ay . (1.1)

Here”?” describes the lattice artifacts. For staggered fermions these are domipgdstetbreaking
terms [1]

1
¥ = = 5CaTr (EusU&sUT+he) +... (1.2)

where we displayed only the term that dominates the pseudoscalar mass spditjitigitly. Here
¢u =y, are taste matrices. This is also the term that dominates the lattice effects in therigw-ly
Dirac spectrum in the regime of weak taste breaking.

For Wilson fermions, the lattice artifact terms are [2]

¥ =WeTr (U2+UT2) W [Tr (U +UT)]?+ W [Tr (U —U™))* . (1.3)
The two-trace terms, with coefficienfg andW;, are suppressed at larlye. We will neglect them

here and only keep the one-trace correction term, proportioved.to

2. Random matrix theory including lattice artifacts

Thee-regime ofXPT at leading order, can equivalently be described by a chiral ranukmimnix
theory (RMT). For continuum QCD, the Dirac operator is representedii BRs

Do = <iV(\)/T I\(/)V) (2.1)

with W a random(N + v) x N complex matrix, when working in a sector with index (topological
charge)v.

2.1 Staggered RMT
For staggered fermions, the Dirac operator in staggered RMT (SRM&pissented as [3]

A, 0O
Dsag= Y00 a+a7 , T, = < é‘ B >®5u5- (2.2)
u

Herely is the identity matrix in taste space ad denotes the taste beaking terms. The dominant
taste-breaking term, corresponding to the term explicitly shown in Eq. (de2)oted by, is
shown in the second part. Therg, andB,, are random Hermitian matrices of sid¢+ v) x (N +

v) andN x N, respectively. The width of the Gaussion distribution®\gfandB,, is proportinal to

C4. The dimensionless combinati@AC,V controls the strength of the taste breaking in SRMT.
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Without the taste-breaking terms” (i.e., in the continuum limit) the eigenvalues of the Dirac
operator come in degenerate quartets. For weak taste break@yy, < 1, the quartets of eigen-
values are split, at leading order in a perturbatiorals,, into pairs of eigenvalues with splitting
MAquart [3]. The pairs of eigenvalues, in turn, are split, for weak taste breakingecond order in
a perturbation by.7c,, with subdominant splittindA ,sir. S0 SRMT predicts

AA M pai
;‘\“""” Day/CaV , )\pa” 0a?CyV . (2.3)

2.2 Wilson RMT
For Wilson fermions, the Dirac operator in Wilson RMT (WRMT) is represe e [4]

AO
= a 2.4
with A andB random Hermitian matrices of siz&l + v) x (N+ v) andN x N, respectively, that
represent the chiral symmetry breaking Wilson term of the lattice Wilson-Dipacator.

Akemannet al., Ref. [4], have worked out the eigenvalue distribution of the Hermitian \Wiso
Dirac operatorHw = y5 (Dw + mp), or its RMT equivalent &y = y5 (%w + M) with

1
m=mzV =27N and & = 2VV8V:§€12N (2.5)

held fixed, using WilsoX PT. The results were reproduced directly from WRMT in [5]. In Eq.) 2.5
mis a suitably subtracted version of the bare nragsin the analytical predictions, the eigenvalues
are rescaled witlV in the lattice QCD case, and witiNXor WRMT.

3. Resultsfor staggered fermions compared to SRMT

We have computed low lying staggered eigenvalues for various stagapieas with different
smearings using ensembles of pure gauge configurations generatedenitfagiaki gauge action.
As observed previously [6], the quartet structure, and the appeardrclearly distinct would-be
zeromodes, becomes more visible with increased smearing and with smaller |adibiegs Here
we show and discuss some results with our best staggered action, alikeS(Qtion but with first
a HYP(ii) smearing step [7] instead of a fat7 smearing step and subsamitization, followed
by an asq step with the appropriate Lepage term, denoted by “HYPadg@Linore details and
further results we refer to Ref. [8]. Here we illustrate a few of our figdin

We compare distributions of the lowest four eigenvalues frod200Q = 0 configurations at
a=0.093 fm andL = 1.5 fm with Monte Carlo generated SRMJI = 0 eigenvalue distributions
for the taste violating parametefC,V = 0.005 in Fig. 1! The LQCD eigenvalues are rescaled by
>V and the SRMT ones byN\efor the comparison. The distributions agree quite nicely.

Fig. 2 shows the distribution of the lowest four eigenvalues, including thebsdive would-
be zeromodes, for 2000|Q| = 1 configurations of the same gauge ensemblevardl SRMT
MC generated eigenvalue distributions. Again, the distributions agree doély,ralthough the

1We thank James Osborn for providing the eigenvalues from SRMT gesueby MC.
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Figure 1. Distributions of the lowest four (rescaled) eigenvalues@= 0. The left panel shows the
staggered Dirac eigenvalues from an ensembla 6f0.093 fm andL = 1.5 fm configurations, the right
panel the eigenvalues from a MC generated SRMT ensembldagité-breaking parametafC,V = 0.005.

Bv_HYPasqRL, £,,=2.635, 164, Q=1 . Bv_SRMT, a%0d,v=0.005, v=1
[ T T T T | T T T T | T T T T | T I- [ T T T T | T T T T | T T T T | T I-
4 1N Oev 2 ] 4 I Oev?2 ]
+ ev3 E F + ev3 k
_ Lo _
I ] [ ]
3K — 3 M —
—~ T —_ [|®
4 = |
& 7 T [
b il
2 — 2 H —
] @
1 _ 1 fig ]
0 :H_i%/gg::] |\|\| jn—'\i A i T SRR (PR g- 0[;’__;_‘"'4 i .:n : |i -|7.|: j—::‘: I: P l VY n:-
0 2 4 6 0 2 4 6
@ z

Figure 2: Same as Fig. 1 but fdQ| = 1 (v = 1) configurations. Here, the lowest two eigenvalues are the
would-be zeromodes.

distributions of the would-be zeromodes for the staggered Dirac opdraver somewhat longer
tails than their SRMT counterparts. In the SRMT distributions, the peak hefghe “would-be
zeromodes” turns out to be the feature most sensitive to the value of thdtaateng parameter
a’CyV. Itis from this peak height that we estimated th#E,V = 0.005 provides the best match to
the LQCD data.

According to the SRMT prediction, Eq. (2.3), the dominant splitfgua+ should vanish,
at fixed volume, likearla, wheren depends on the degree of improvement, while the subdominat
splitting AApair should vanish likea®. We compare these predictions, as well as the vanishing of the
would-be zeromodes, for fixed lattice size= 1.5 fm, in Fig. 3. The would-be zeromodes appear
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Figure 3: The vanishing of the splitting (left panels) and would-beoreodes (right panels) — shown is the
average over the would-be zeromodes with slightly posiigenvalues — as a function af (top) ora2a
(bottom). The inclined straight lines show the behaviordddsted in the plots.

to vanish a little faster thaa®. The behavior of the splittings is less clear, with a vanishing?as
favored for the smaller splittinghA .o . But both splittings certainly vanish in the continuum limit,
as expected.

4. Resultsfor Wilson fermions compared to WRM T2

We computed the low-lying eigenvalues of the Hermitian Wilson-Dirac opetdtpon the
Q=0and|Q| = 1 configurations of an ensemble with lattice spacrg0.075 fm and sizé = 1.5
fm, as before generated with the Iwasaki gauge action, for two bamk quasses. To suppress
dislocations we smoothened the gauge field with one HYP smearing step befsteucting the
Wilson-Dirac operator.

2The results in this section were obtained in collaboration with Poul Damgadrtian Splittorff.
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Figure4: The eigenvalues density bffy with bare masamy = —0.184 on an ensemble af= 0.075 fm and
L = 1.5 fm configurations witfQ = 0 (left) and|Q| = 1 (right). TheQ = 0 distribution was used to obtain
the WRMT parameters. The same parameters are used f@|tkel WRMT distribution on the right.

RMT predictions are made for sectors with a given indexSuch an index can be defined
from the real eigenvalues of the Wilson-Dirac operator and the chiralifidélseocorresponding
eigenmodes Ref. [4]. Equivalently, the index can be obtained from s flow of the Hermi-
tian Wilson-Dirac operator [9]. In both cases the definition depends at: &lee maximum real
eigenvalue kept or the mass at which the flow is terminated. For our setupuwd fittle depen-
dence on this cut and good agreement with the cheaper definition of topdloparge with six
HYP smearings and use of an improvetE operator [10].

To compare the sepctrum of the Hermitian Wilson-Dirac operator with predectiom WRMT,
we used the distribution in th@ = 0 sector with the bare mass corresponding to a lighter quark
mass to find the WRMT parametens ahd &, and the eigenvalue rescaling factv that best
describe our data, see Fig. 4 (left). Using Saene parameter values, WRMT then predicts the
|Q| = 1 distribution that can be compared with the measured one, see Fig. 4 (Wghtind a nice
agreement with the measured (histogrammed) distribution.
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Figure5: Same as Fig. 4 but for bare massy = —0.178. The same WRMT parameters, up to changing ~
according to the bare mass differendé) = dmpzV, were used.

Changing only the bare quark massHi, should leave the WRMT parametar and the
rescaling factoEV unchanged, while the WRMT parametashould be changed byh= dmyxV,
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Eq. (2.5), wheredmy is the difference in bare quark mass. We, therefore, have parameter fr
predicitions for the eigenvalue distributions with the second quark massiodasn Fig. 5, these
predictions work well.
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Figure 6: The dependence of the distribuion of the eigenvalue denéit#;, onm (left) and ona’(right).
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We illustrate the sensitivity of the analytic WRMT distributions to the WRMT pararmseier
in Fig. 6 (left) and taa'in Fig. 6 (right). For the ensemble considered in Figs. 4 and 5 we can obtain
mto an accuracy of about®anda’to about 005. Going to smaller lattice spacing will increase
the accuracy. For further details and more tests, see [11]. A. Deuzeresented results from a
similar study at this conference with compatible results [12].
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