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1. Introduction

We have performed research on the vacuum structure of the Aokephbgsising the P.D.F.
formalism for fermionic bilinears to predict the value of certain order patara@®f symmetries.
The P.D.F. formalism for fermionic bilinears [1] relates the spectrum of thedWildirac operator
in the Gibbs state and in the thermodynamic limit, to the expectation value of any pbwagry
fermionic bilinear. Taking into account that the interesting order parametfdisee symmetries
we want to analyse inside the Aoki phase are fermionic bilinears, this metmrtes the right
choice. However, the P.D.F. is unable to predict the distribution of the eafjeew of the Wilson
Dirac operator, thence, we must measure this distribution numerically.

The fact that we measure quantities in the Gibbs state rise a problem: sincébsestte
comprises all the possible existing vacua, in case of spontaneous symmeztkjnly the mean
value of any fermionic bilinear over the Gibbs state (taking into account allabea) will be zero,
even if it is an order parameter of a broken symmetry

(0) = 3 Wa(O)a =0, (L.1)

wherea indicates the vacuum where the observables are measwédd,the weight of that par-
ticular vacuum in the partition function, af®), is the expectation value of the opera®in the
vacuuma. As the vacua related by the broken symmetry transformations have the sghgsy
all the expectation values cancel in the end and the average in the Gibhs state A simple way
to solve this problem is to compute the expectation value of an even powerapéhators, which
should be non-zero if the symmetry is spontaneously broken.

The expected vacuum structure of the Aoki phase [2] is the followingh Barity Z, and
flavour3J (2) (in our two-flavoured case) symmetries are spontaneously brokes(tb)aubgroup
of flavour, and<(it,l7ygr3w)2 becomes non-zero, but strang Iyitﬁygt,u)z vanishes, in spite of
being a Parity order parameter. The explanation for this phenomenon iddtenee of a ‘modified
Parity symmetry’, called, composed by a discrete flavour rotation plus Parity. According to the
standard picture of the Aoki phase [3], this symmetry is the responsible géthishing expectation
value of any even power of the bilineapysy in the Gibbs stafe This picture was confirmed by
XPT calculations [3], which could describe the Aoki phase and its properties.

Maybe the best way to understand the subtle problems arising in this picturanalise the
evolution of the expectation values of the fermionic bilinears we are inter'ﬂsstéd Lﬁygw)2> and

<(itﬁygr3w)2> from the physical phase to the critical line and beyond, inside the Aokigphas

2. Theproblemsof the standard picture

First of all one must recall the behaviour of the pions and ofrtheeson as we approach the
critical line from the “physical phase”. These behaviours are relatétetsusceptibilities

X =V [<(iu7ysrsw)2>a — (i@yta)y | =V ((iFptap)’) = \3, <i)\12> (2.1)

10dd powers automatically vanish for symmetry reasons.
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Xo =V [{(1@9)") —(@yw)s] =V ((i@w)’) = <Zm2> <ijir>(z.z>

where theA; are the eigenvalues of the hermitian Dirac Wilson opergbr, and the rightmost
hand side of these equations is the P.D.F. expression for the expectdties wvé these opera-
tors, multiplied by the corresponding volume factor. Since outside the Ackselthere exists
only one vacuum, the Gibbs state expectation values (without subscrigteddentified with the
o —subscripted expectation values.

The first susceptibility should diverge at the critical line, so the neutral perome massless.
Moving beyond the critical line takes us to the Aoki phase, where it is welhknthe fact that

(iBpTsw)?) = <§M12> #0 23)

Notice the extra 1V factor with respect to eq. 2.1. Indeed, the biline@mst3y is an order
parameter for Parity-Flavour breaking, and therefore a landmark éokdlki phase.

The n meson, in contrast, behaves in a very different way, for due to the dpomnstays
massive even at the critical line. Indeed the second contribution tg-#esceptibility,x,, in 2.2
should diverge slower thaw at the critical line in order to compensate the divergency of the pion
susceptibility (first contribution in 2.2) keeping this way a finie. If we move deeper in the Aoki
phase, it seems plausible to have a stronger divergen®) fasuch a way to allow the realization
of the following equation

oS50 S5 e

and thus realizing the standard picture of the Aoki phase. One might as&aro s be exactly
zero in a Parity broken phase, but then Bisymmetry is introduced [3], and sincgysy is also
an order parameter f&, then it must vanish if the Aoki phase preservesRhsymmetry.

In fact, the effects of thi®’ symmetry are deeper. Since the standard picture of the Aoki phase
requires(igysy), = 0 for any possible vacua, this can be translated in the P.D.F. language into the
following statement: any even power of the biline@iysy must have a vanishing expectation value
in the Gibbs state. This statement, in the P.D.F. language, implies an infinite seepéiment
sum rules for the eigenvalues of the Dirac operator [4], each sum ewieirty from a different
even power of the operator,

<(iw-,tp)2”> -0, n=1,23... (2.5)

This tower of sum rules needn’t be something exotical, and they can becedfnaturally by the
realization of the® symmetry [3, 5].

Up to now everything in the standard picture of the Aoki phase seems tamtsidlow let’s
look at the operator

Q= Tr[0eD) ] = 33 (2.6)
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This quantity. which appears in the second piece of the r.h.s. of eq. 2rlpislar parameter for
the P’ symmetry as well, and therefore it must vanish. Providing that it is an ineogerator, all

its higher moments should also vanish in the Aoki phad& gymmetry is realized in all vacua.
But in this case<(itﬁygtp)2> can not vanish, for its first piece (see eq. 2.4) is known to be non-zero
inside the Aoki phase. Hence we have a contradictionPantust be broken inside the Aoki phase.
Nonetheless, withow®' there is no way to explain the tower of sum rules, or even the vanishing of
(igysy), in every possible vacua. The only way out for the standard picture is that the operator
Q be non-intensive. Alternatively, the standard picture of the Aoki phasgbe incomplete, and
there might exist some new properties that have been overlooked dugipgshyears.

What we propose [4, 6] is the addition of new vacua to the Aoki phasekadp the vacua
associated to the standard picture of the Aoki phase, but we add newiomeder to remove the
contradiction that arised around tRésymmetry. In these new vacua, the bilinégmsy is free
to take non-vanishing values, Parity aRdare spontaneously broken, and there is no need of an
infinite tower of sum rules.

3. Thesimulations

We decided to carry out HMC simulations of QCD with two flavours of Wilsonmiiens,
inside and outside the Aoki phase, and without external sources, tatin@) whether theP’
symmetry was preserved or not aft) the behaviour of the theD.F. of the operatoQ with the
volume. Technical data of these simulations will be reported in a forcomminigcptibn.

Unfortunately there is a problem with these simulations: since quasi-zercsrapgear inside
the Aoki phase, the eigenvalues are tempted to cross the origin, and théy da so, were it
not for the fact that the crossing of eigenvalues is forbidden by the Hiviamics due to the
apparition of an infinite repulsion when very close to the origin. In ordeokeesthis problem we
classified our simulations according to its sector number, i.e., the numbeoe$&’ eigenvalues
they had beginning from a completely symmetric state (same number of positiveegative
eigenvalues). Then we computed the weight of each sector in the partitioticiu by simulating
the same system, but with several values of the twisted mass term, and th@olexting it to the
case without external source (see Table 1).

\Volume m Sector 0 Sector 1 Sector 2 Sector 3+
44 0.0* 67.65%+1.29% | 32.23%41.35% | 0.11%+0.07% 0%
44 0.01 | 68.13%4-0.95% | 31.63%4-0.96% | 0.24%-4-0.08% 0%
44 0.10 | 69.28%=+0.90% | 30.44%-+0.89% | 0.28%-+ 0.04% 0%
44 Quench| 71.43%=+0.25% | 28.50%+ 0.24% | 0.07%=+0.02% 0%
64 0.10 | 51.41%+0.64% | 44.67%=+0.64% | 3.86%=+0.07% | 0.06%=+0.02%
6% Quench| 55.00%=+ 1.55% | 43.00%+1.94% | 2.00%=+ 0.40% 0%

Table 1: Weights of the different sectors as a function of the volumerg. The value marked with was
obtained from reweighting of the configurations generated a 0.01.

This way we could reconstruct the P.D.F. for the interesting bilinears by sugrtherweighted

P.D.F.’s of all sectors for a given volume.
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4. Simulation results

First of all, we checked the behaviour of the P.D.F. of the opei@toutside the Aoki phase
(point atB = 4.0 andk = 0.18) in the three volumes considered,(8* and &). As the left plot
of fig. 1 clearly indicates, the operatQrbehaves as an intensive operator, and its P.D.F. tends to a
Dirac delta in the origin as the volume increases, so all of its moments vanish iretheoitiynamic
limit.
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Figure 1: On the left, the P.D.F. of outside the Aoki phase. On the center, the P.D.FQadfiside the
Aoki phase. The behaviour points clearly to SSB. On the ridjiet P.D.F. ofQ obtained from configurations
generated with a twisted mass term.
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Figure2: The P.D.F. ofQ obtained from configurations generated with a twisted merss.t

With this simple result we must conclude that there is a subtle problem in the sidioda
mulation of the Aoki phase, but we can go further. Let’s see what hrepipside the Aoki phase
(B = 2.0 andk = 0.25), and for this case we will use data from theahd 6 volumes (the 8
inside the Aoki phase was very expensive for us). We show in the pightof fig. 1 how the
two volumes converge to a single peak of constant width, therefore vweeetteP’ symmetry to
be spontaneously broken inside the Aoki phase. Withdetsymmetry behind, the realization of

2During the conference people were concerned that, at such 8,leve were far from the continuum limit, and
then it didn’t make sense to speak about SSB. Nonetheless our amaljsi®ted to the Aoki phase on the lattice, which
might even not have a continuum limit. Thence we have to look at this systesn atatistical system with Wilson
fermions, not as QCD. In this context, it is perfectly valid to speak ab8&.S
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volume | {(iuysu)’) (@) ((i@ypta)?)
4 (1.495+£0.037)102 | (3.7+1.9)10°3 (5.6040.16) 102
6* | (1.625+0.026)10 2 | (1.098+0.098)10 2 | (5.40240.067)10 2

Table 2: Interesting v.e.v. for the Aoki phase

the infinite tower of sum rules becomes quite enigmatic. Of course we areofarthe thermo-
dynamical limit, and one might argue that, as stated in table 1, the sector 2 ctiotritas the &
volume is important enough to be taken into account. This sector was not sidbétause it was
extremely expensive from the numerical point of view, and for sure itwiblify the final results
shown here, but since its weight is less than 5%, we don’t expect thesges to be relevant for
the final result.

In order to reinforce the statement that there are new unconsidered wagide the Aoki
phase, we can measure the P.D.F. of the ope€atorconfigurations generated with several values
of an external Aoki-like source termj T3, but assuming that those are the configurations of
the Gibbs state. Since the addition of an external source selects a stAnéievdcuum, we expect
that all the contributions to the P.D.F. coming from the other vacua will be redno%s we can
see in fig. 2, the obtained P.D.F. for this case is essentially different thaméhehown in the right
plot of fig. 1: the P.D.F. seems independent of the value of the extertdhbfiel of the volume,
but when we compare this distribution with the former one in the right of fig.elnetice that the
P.D.F. of the operator with external source is much widand since the P.D.F. depends heavily on
the spectrum of the Dirac operator, we expect the spectrum to be diffesevell.

In contrast, if in the computation of the P.D.F. we take into account the facivéhare using
configurations generated with an external source term, then the P.DtEssixims change accord-
ingly, and we find that the final P.D.F. of the operafpis a Dirac delta at the origin, a result quite
expected from all the existent work on the Aoki phase, including chigahlagians.

SinceP’ is broken according to our results, the arguments supporting the existiemtmver of
sum rules are no longer valid, thus it is natural to think that the expectatioa (iq_lyg,w)z will
be non-zero in the Gibbs state inside the Aoki phase. As stated in formersgépon the subject,
this observable is extremely difficult to measure, nonetheless we manadaditosensible results
from our data, which we show in Table 2.

The last column refers t (icﬁygrgw)z , the landmark of the Aoki phase. As we see, it is
clearly non-zero for all the volumes, confirming that our simulations lie withinAbki phase.
The first column belongs t (it,Uuygt,Uu)z , Which is an order parameter for Parity, but it takes into
account just one flavour (which we labeled This quantity should be non-zero inside the Parity-
breaking Aoki phase, regardless of the discussion of the new vdnally, the most important
observable, the flavour singlet pseudoscéldfiysy)? ), which —since we are dealing with two
degenerated flavours,andd- is the sum of two of the former condensategys Yy + i Pq ysPy-
The standard picture of the Aoki phase predicts zero expectation Vighie parameter in any Aoki

3The reason can be deduced from the properties of the spectrum: iasevith external source, there is no lower
bound for the modulus of an eigenvalue, but in the case without exteonate, the lower bound is given by\M. This
difference generates the long tails of the case with an external source.
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vacua, whereas each one of the pseudoscalars restricted to ong flavgys Yy ¢ will not vanish
due to Parity breaking. Hence, the standard picture of the Aoki phésees an antiferromagnetic
ordering of the pseudoscaldig, sy = —ifqysyqg, which is not require in our hypothesis of the
new vacua. The data in table 2 shows a clear non-zero expectation nalQéLﬁygw)2> in the

case of the largest volumé 6of the same order of magnitude éé tﬁuygwu)2>, supporting our
previous discussion regardif breaking.

5. Conclusions

During the last years we have performed an extensive research touiintaur alternative
vacuum structure of the Aoki phase, derived from a P.D.F. analysis,realized or not. For the
first time we can provide some numerical evidence of the realization of thevaewa, and of
P’ symmetry breaking by demonstrating that the P.D.F. of the ope@atan order parameter for
the P’ symmetry, is not a Dirac delta inside the Aoki phase. On the other hari®,issequired
to explain the current picture of the Aoki phase, our result calls intotgurethe validity of the
standard Aoki picture. We were also able to perform a direct measuterhé(i L,UVSL,U)Z\Z, which
casted a non-zero value. Were this result also true in the thermodynamic limit,lid Wwreak the
hypothesis of the sum-rules. As the sum-rules are a direct consequiethegyPT application to
the Aoki phase, we are also calling into question the validity ofg¢R& analysis performed in the
articles [3] for low values of3 (around 2.0, very coarse lattices). SinpdeT is expected to work
well at higher values o8, there might be a way to reconcile the two different views, for the terms
in the Symanzik expansion of the action are proportional to powers of theelapigcinga, and
may it happen that at such a Igdvas 2.0, we need more terms in tgET lagrangian to describe
properly the theory. In any case, should we confirm our alternatigeura structure for the Aoki
phase for higher volumes, th@T results for this scenario should be revised.
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