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1. Introduction

We have performed research on the vacuum structure of the Aoki phase, by using the P.D.F.
formalism for fermionic bilinears to predict the value of certain order parameters of symmetries.
The P.D.F. formalism for fermionic bilinears [1] relates the spectrum of the Wilson Dirac operator
in the Gibbs state and in the thermodynamic limit, to the expectation value of any powerof any
fermionic bilinear. Taking into account that the interesting order parametersof the symmetries
we want to analyse inside the Aoki phase are fermionic bilinears, this method becomes the right
choice. However, the P.D.F. is unable to predict the distribution of the eigenvalues of the Wilson
Dirac operator, thence, we must measure this distribution numerically.

The fact that we measure quantities in the Gibbs state rise a problem: since the Gibbs state
comprises all the possible existing vacua, in case of spontaneous symmetry breaking the mean
value of any fermionic bilinear over the Gibbs state (taking into account all thevacua) will be zero,
even if it is an order parameter of a broken symmetry

〈O〉 = ∑
α

wα〈O〉α = 0, (1.1)

whereα indicates the vacuum where the observables are measured,wα is the weight of that par-
ticular vacuum in the partition function, and〈O〉α is the expectation value of the operatorO in the
vacuumα . As the vacua related by the broken symmetry transformations have the same weights,
all the expectation values cancel in the end and the average in the Gibbs stateis zero. A simple way
to solve this problem is to compute the expectation value of an even power of theoperators, which
should be non-zero if the symmetry is spontaneously broken.

The expected vacuum structure of the Aoki phase [2] is the following: both Parity Z2 and
flavourSU(2) (in our two-flavoured case) symmetries are spontaneously broken to aU(1) subgroup

of flavour, and
〈

(iψ̄γ5τ3ψ)2
〉

becomes non-zero, but strangely
〈

(iψ̄γ5ψ)2
〉

vanishes, in spite of
being a Parity order parameter. The explanation for this phenomenon is the existence of a ‘modified
Parity symmetry’, calledP′, composed by a discrete flavour rotation plus Parity. According to the
standard picture of the Aoki phase [3], this symmetry is the responsible of the vanishing expectation
value of any even power of the bilineariψ̄γ5ψ in the Gibbs state1. This picture was confirmed by
χPT calculations [3], which could describe the Aoki phase and its properties.

Maybe the best way to understand the subtle problems arising in this picture is toanalyse the
evolution of the expectation values of the fermionic bilinears we are interestedin,

〈

(iψ̄γ5ψ)2
〉

and
〈

(iψ̄γ5τ3ψ)2
〉

from the physical phase to the critical line and beyond, inside the Aoki phase.

2. The problems of the standard picture

First of all one must recall the behaviour of the pions and of theη meson as we approach the
critical line from the “physical phase”. These behaviours are related tothe susceptibilities

χπ0 = V
[〈

(iψ̄γ5τ3ψ)2
〉

α
−〈iψ̄γ5τ3ψ〉2

α

]

= V
〈

(iψ̄γ5τ3ψ)2
〉

=
2
V

〈

V

∑
i=1

1

λ 2
i

〉

(2.1)

1Odd powers automatically vanish for symmetry reasons.
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χη = V
[〈

(iψ̄γ5ψ)2
〉

α
−〈iψ̄γ5ψ〉2

α

]

= V
〈

(iψ̄γ5ψ)2
〉

=
2
V

〈

V

∑
i=1

1

λ 2
i

〉

−
4
V

〈[

V

∑
i=1

1
λi

]2〉

(2.2)

where theλi are the eigenvalues of the hermitian Dirac Wilson operatorγ5D, and the rightmost
hand side of these equations is the P.D.F. expression for the expectation values of these opera-
tors, multiplied by the corresponding volume factor. Since outside the Aoki phase there exists
only one vacuum, the Gibbs state expectation values (without subscript) canbe identified with the
α−subscripted expectation values.

The first susceptibility should diverge at the critical line, so the neutral pion become massless.
Moving beyond the critical line takes us to the Aoki phase, where it is well known the fact that

〈

(iψ̄γ5τ3ψ)2
〉

=
2

V 2

〈

V

∑
i=1

1

λ 2
i

〉

6= 0 (2.3)

Notice the extra 1/V factor with respect to eq. 2.1. Indeed, the bilineariψ̄γ5τ3ψ is an order
parameter for Parity-Flavour breaking, and therefore a landmark for the Aoki phase.

The η meson, in contrast, behaves in a very different way, for due to the anomaly, it stays
massive even at the critical line. Indeed the second contribution to theη-susceptibility,χη , in 2.2
should diverge slower thanV at the critical line in order to compensate the divergency of the pion
susceptibility (first contribution in 2.2) keeping this way a finiteχη . If we move deeper in the Aoki
phase, it seems plausible to have a stronger divergency (asV ) in such a way to allow the realization
of the following equation

〈

(iψ̄γ5ψ)2
〉

=
2

V 2

〈

V

∑
i=1

1

λ 2
i

〉

−
4

V 2

〈(

V

∑
i=1

1
λi

)2〉

= 0 (2.4)

and thus realizing the standard picture of the Aoki phase. One might ask how caniψ̄γ5ψ be exactly
zero in a Parity broken phase, but then theP′ symmetry is introduced [3], and sinceiψ̄γ5ψ is also
an order parameter forP′, then it must vanish if the Aoki phase preserves theP′ symmetry.

In fact, the effects of thisP′ symmetry are deeper. Since the standard picture of the Aoki phase
requires〈iψ̄γ5ψ〉α = 0 for any possible vacua, this can be translated in the P.D.F. language into the
following statement: any even power of the bilineariψ̄γ5ψ must have a vanishing expectation value
in the Gibbs state. This statement, in the P.D.F. language, implies an infinite set of independent
sum rules for the eigenvalues of the Dirac operator [4], each sum rule deriving from a different
even power of the operator,

〈

(iψ̄γ5ψ)2n
〉

= 0, n = 1,2,3. . . (2.5)

This tower of sum rules needn’t be something exotical, and they can be enforced naturally by the
realization of theP′ symmetry [3, 5].

Up to now everything in the standard picture of the Aoki phase seems consistent. Now let’s
look at the operator

Q =
1
V

Tr
[

(γ5D)−1
]

=
1
V

V

∑
i=1

1
λi

(2.6)
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This quantity. which appears in the second piece of the r.h.s. of eq. 2.4, is an order parameter for
theP′ symmetry as well, and therefore it must vanish. Providing that it is an intensive operator, all
its higher moments should also vanish in the Aoki phase ifP′ symmetry is realized in all vacua.
But in this case

〈

(iψ̄γ5ψ)2
〉

can not vanish, for its first piece (see eq. 2.4) is known to be non-zero

inside the Aoki phase. Hence we have a contradiction, andP′ must be broken inside the Aoki phase.
Nonetheless, withoutP′ there is no way to explain the tower of sum rules, or even the vanishing of
〈iψ̄γ5ψ〉α in every possible vacuaα . The only way out for the standard picture is that the operator
Q be non-intensive. Alternatively, the standard picture of the Aoki phasemaybe incomplete, and
there might exist some new properties that have been overlooked during the past years.

What we propose [4, 6] is the addition of new vacua to the Aoki phase. Wekeep the vacua
associated to the standard picture of the Aoki phase, but we add new ones, in order to remove the
contradiction that arised around theP′ symmetry. In these new vacua, the bilineariψ̄γ5ψ is free
to take non-vanishing values, Parity andP′ are spontaneously broken, and there is no need of an
infinite tower of sum rules.

3. The simulations

We decided to carry out HMC simulations of QCD with two flavours of Wilson fermions,
inside and outside the Aoki phase, and without external sources, to findout (a) whether theP′

symmetry was preserved or not and(b) the behaviour of the theP.D.F. of the operatorQ with the
volume. Technical data of these simulations will be reported in a forcomming publication.

Unfortunately there is a problem with these simulations: since quasi-zero modes appear inside
the Aoki phase, the eigenvalues are tempted to cross the origin, and they would do so, were it
not for the fact that the crossing of eigenvalues is forbidden by the HMCdynamics due to the
apparition of an infinite repulsion when very close to the origin. In order to solve this problem we
classified our simulations according to its sector number, i.e., the number of ’crossed’ eigenvalues
they had beginning from a completely symmetric state (same number of positive and negative
eigenvalues). Then we computed the weight of each sector in the partition function by simulating
the same system, but with several values of the twisted mass term, and then extrapolating it to the
case without external source (see Table 1).

Volume mt Sector 0 Sector 1 Sector 2 Sector 3+

44 0.0⋆ 67.65%±1.29% 32.23%±1.35% 0.11%±0.07% 0%
44 0.01 68.13%±0.95% 31.63%±0.96% 0.24%±0.08% 0%
44 0.10 69.28%±0.90% 30.44%±0.89% 0.28%±0.04% 0%
44 Quench 71.43%±0.25% 28.50%±0.24% 0.07%±0.02% 0%
64 0.10 51.41%±0.64% 44.67%±0.64% 3.86%±0.07% 0.06%±0.02%
64 Quench 55.00%±1.55% 43.00%±1.94% 2.00%±0.40% 0%

Table 1: Weights of the different sectors as a function of the volume and mt . The value marked with⋆ was
obtained from reweighting of the configurations generated at mt = 0.01.

This way we could reconstruct the P.D.F. for the interesting bilinears by summing the weighted
P.D.F.’s of all sectors for a given volume.
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4. Simulation results

First of all, we checked the behaviour of the P.D.F. of the operatorQ outside the Aoki phase
(point atβ = 4.0 andκ = 0.18) in the three volumes considered (44, 64 and 84). As the left plot
of fig. 1 clearly indicates, the operatorQ behaves as an intensive operator, and its P.D.F. tends to a
Dirac delta in the origin as the volume increases, so all of its moments vanish in the thermodynamic
limit.
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Figure 1: On the left, the P.D.F. ofQ outside the Aoki phase. On the center, the P.D.F. ofQ inside the
Aoki phase. The behaviour points clearly to SSB. On the right, the P.D.F. ofQ obtained from configurations
generated with a twisted mass term.
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Figure 2: The P.D.F. ofQ obtained from configurations generated with a twisted mass term.

With this simple result we must conclude that there is a subtle problem in the standard for-
mulation of the Aoki phase, but we can go further. Let’s see what happens inside the Aoki phase
(β = 2.0 andκ = 0.252), and for this case we will use data from the 44 and 64 volumes (the 84

inside the Aoki phase was very expensive for us). We show in the rightplot of fig. 1 how the
two volumes converge to a single peak of constant width, therefore we expect theP′ symmetry to
be spontaneously broken inside the Aoki phase. Without aP′ symmetry behind, the realization of

2During the conference people were concerned that, at such a lowβ , we were far from the continuum limit, and
then it didn’t make sense to speak about SSB. Nonetheless our analysisis devoted to the Aoki phase on the lattice, which
might even not have a continuum limit. Thence we have to look at this system as an statistical system with Wilson
fermions, not as QCD. In this context, it is perfectly valid to speak about SSB.
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Volume
〈

(iψ̄uγ5ψu)
2
〉 〈

(iψ̄γ5ψ)2
〉 〈

(iψ̄γ5τ3ψ)2
〉

44 (1.495±0.037)10−2 (3.7±1.9)10−3 (5.60±0.16)10−2

64 (1.625±0.026)10−2 (1.098±0.098)10−2 (5.402±0.067)10−2

Table 2: Interesting v.e.v. for the Aoki phase

the infinite tower of sum rules becomes quite enigmatic. Of course we are far from the thermo-
dynamical limit, and one might argue that, as stated in table 1, the sector 2 contribution for the 64

volume is important enough to be taken into account. This sector was not simulated because it was
extremely expensive from the numerical point of view, and for sure it willmodify the final results
shown here, but since its weight is less than 5%, we don’t expect these changes to be relevant for
the final result.

In order to reinforce the statement that there are new unconsidered vacua inside the Aoki
phase, we can measure the P.D.F. of the operatorQ in configurations generated with several values
of an external Aoki-like source term,hiψ̄γ5τ3ψ , but assuming that those are the configurations of
the Gibbs state. Since the addition of an external source selects a standardAoki vacuum, we expect
that all the contributions to the P.D.F. coming from the other vacua will be removed. As we can
see in fig. 2, the obtained P.D.F. for this case is essentially different than theone shown in the right
plot of fig. 1: the P.D.F. seems independent of the value of the external field and of the volume,
but when we compare this distribution with the former one in the right of fig. 1, we notice that the
P.D.F. of the operator with external source is much wider3, and since the P.D.F. depends heavily on
the spectrum of the Dirac operator, we expect the spectrum to be different as well.

In contrast, if in the computation of the P.D.F. we take into account the fact thatwe are using
configurations generated with an external source term, then the P.D.F. expressions change accord-
ingly, and we find that the final P.D.F. of the operatorQ is a Dirac delta at the origin, a result quite
expected from all the existent work on the Aoki phase, including chiral lagrangians.

SinceP′ is broken according to our results, the arguments supporting the existenceof a tower of
sum rules are no longer valid, thus it is natural to think that the expectation value

〈

(iψ̄γ5ψ)2
〉

will
be non-zero in the Gibbs state inside the Aoki phase. As stated in former papers [6] on the subject,
this observable is extremely difficult to measure, nonetheless we managed to obtain sensible results
from our data, which we show in Table 2.

The last column refers to
〈

(iψ̄γ5τ3ψ)2
〉

, the landmark of the Aoki phase. As we see, it is
clearly non-zero for all the volumes, confirming that our simulations lie within theAoki phase.
The first column belongs to

〈

(iψ̄uγ5ψu)
2
〉

, which is an order parameter for Parity, but it takes into
account just one flavour (which we labeledu). This quantity should be non-zero inside the Parity-
breaking Aoki phase, regardless of the discussion of the new vacua.Finally, the most important
observable, the flavour singlet pseudoscalar

〈

(iψ̄γ5ψ)2
〉

, which –since we are dealing with two
degenerated flavours,u andd– is the sum of two of the former condensatesiψ̄uγ5ψu + iψ̄dγ5ψd .
The standard picture of the Aoki phase predicts zero expectation value of this parameter in any Aoki

3The reason can be deduced from the properties of the spectrum: in the case with external source, there is no lower
bound for the modulus of an eigenvalue, but in the case without externalsource, the lower bound is given by 1/V . This
difference generates the long tails of the case with an external source.
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vacua, whereas each one of the pseudoscalars restricted to one flavour iψ̄u,dγ5ψu,d will not vanish
due to Parity breaking. Hence, the standard picture of the Aoki phase enforces an antiferromagnetic
ordering of the pseudoscalarsiψ̄uγ5ψu = −iψ̄dγ5ψd , which is not require in our hypothesis of the

new vacua. The data in table 2 shows a clear non-zero expectation value for
〈

(iψ̄γ5ψ)2
〉

in the

case of the largest volume 64, of the same order of magnitude as
〈

(iψ̄uγ5ψu)
2
〉

, supporting our

previous discussion regardingP′ breaking.

5. Conclusions

During the last years we have performed an extensive research to find out if our alternative
vacuum structure of the Aoki phase, derived from a P.D.F. analysis, was realized or not. For the
first time we can provide some numerical evidence of the realization of the newvacua, and of
P′ symmetry breaking by demonstrating that the P.D.F. of the operatorQ, an order parameter for
the P′ symmetry, is not a Dirac delta inside the Aoki phase. On the other hand, asP′ is required
to explain the current picture of the Aoki phase, our result calls into question the validity of the
standard Aoki picture. We were also able to perform a direct measurement of

〈

(iψ̄γ5ψ)2
〉

, which
casted a non-zero value. Were this result also true in the thermodynamic limit, it would break the
hypothesis of the sum-rules. As the sum-rules are a direct consequenceof theχPT application to
the Aoki phase, we are also calling into question the validity of theχPT analysis performed in the
articles [3] for low values ofβ (around 2.0, very coarse lattices). SinceχPT is expected to work
well at higher values ofβ , there might be a way to reconcile the two different views, for the terms
in the Symanzik expansion of the action are proportional to powers of the lattice spacinga, and
may it happen that at such a lowβ as 2.0, we need more terms in theχPT lagrangian to describe
properly the theory. In any case, should we confirm our alternative vacuum structure for the Aoki
phase for higher volumes, theχPT results for this scenario should be revised.
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