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We describe how the background field method can be applied to Non-Relativistic QCD (NRQCD)

on the lattice in order to determine the one-loop radiative corrections to the coefficients of the

NRQCD action in a manifestly gauge-covariant manner. As a first application, we compute the

shift of the hyperfine splitting of bottomonium stemming from the one-loop corrections to the

coefficient of theσσσ ·B term in the NRQCD action and the spin-dependent four-fermion couplings

arising at the one-loop level. This is found to bring the lattice predictions in line with experiment

as well as greatly reducingO(a2) dependences. We report a preliminary estimate for the hyperfine

splitting, calculated on a fine lattice, of 70(6)MeV.
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1. Introduction

Non-Relativistic QCD (NRQCD) [1] is an effective field theory that has been applied with
considerable success to the description of hadrons containing heavy quarks [2]. However, the
currently used NRQCD actions do not include radiative improvement (with the exception of tadpole
improvement), and this will affect the precision with which crucial quantities such as the hyperfine
splitting between theϒ and theηb can be determined [3]. Radiative improvement is complicated by
the nature of the non-abelian gauge interactions in QCD and NRQCD, which requires NRQCD to
be implemented on a lattice and hence makes it necessary to retain the full 1/(ma)n dependences.
Moreover, IR divergences play a non-trivial rôle in QCD and NRQCD.

We report on the calculation of the full chromomagnetic moment and four-fermion spin de-
pendent interaction [4]. This is used to radiatively correct NRQCD, allowing a more accurate
determination of the hyperfine splitting. This is the first time the lattice NRQCD action has been
corrected using the background field (BF) method.

2. The Background field method for lattice NRQCD

The BF method [5] is a well-established tool to compute the effective action in quantum field
theory. The auxiliary gauge invariance of BFG amplitudes implies that the effective action contains
only gauge-covariant operators. This leads to a set of Ward Identities in QCD that reduce the
amount of calculation necessary to renormalize the theory. This property is also important for
operators of dimensionD > 4, where the loss of gauge-covariance would lead to a proliferation of
additional operators, obscuring the underlying gauge symmetry and greatly complicating the theory
and simulation. Moreover, an attempt to match without using BFG would lead to the appearance
of ultraviolet logarithms, which would have to be cancelled by the contributions from additional
non-gauge-covariant operators. As a consequence of BFG, we are free to use different regulators
in QCD and NRQCD. In particular, we can calculate the QCD vertex analytically in the continuum
using dimensional regularization, or on a fine lattice and taking the continuum limit, which is
paticularly convenient for checking the gauge-parameter independence of the result. Although
BFG does not guarantee that the coefficients in the effective action are independent of the gauge
parameter [6], in our case we match between theories using on-shell quantities and we explicitly
find that the coefficients are independent of the gauge parameter in both QCD and NRQCD.

In the following we denote the perturbative expansion for a generic parameterw as w =
∑n=0w(n)αn.

3. Matching the σ ·B term

The effective action for continuum QCD contains the following terms involving the fermion
fields:

Γ[Ψ,Ψ,A] = Z−1
2 Ψ 6DΨ+δZσ Ψ

σ µνFµν

2m
Ψ+ . . . (3.1)

which after renormalization of the first term gives

Γ[ΨR,ΨR,A] = ΨR 6DΨR+bσ ΨR
σ µνFµν

2mR
ΨR+ . . . (3.2)
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(a)(a) (b)(b)

(d)(d) (e)(e)

(c)(c)

(f)(f)

Figure 1: Feynman diagrams to be computed in both QCD and NRQCD for matching theσ ·B term in the
NRQCD action.

with
bσ = δZσ Z2Zm = ∑

n=1

b(n)
σ α

n , (3.3)

where the leading correction is of orderO(αs) and comes fromδZσ alone. After performing
the non-relativistic reduction by a Foldy-Wouthuysen-Tani (FWT) transformation, we find that the
term relevant for the determination of the chromomagnetic moment of the quark is

(1+bσ )ψ
†
R

σσσ ·BBB
2mR

ψR . (3.4)

A straightforward analytical calculation of the Feynman diagrams shown in figure1 (a)–(b) gives

bσ =
(

3
2π

log
µ

m
+

13
6π

)
α (3.5)

at the one-loop level, whereµ is the infrared cutoff.
The effective action for NRQCD contains the spin-dependent term

Γσ [ψ,ψ†,A] = c4ZNR
σ ψ

† σσσ ·BBB
2M

ψ (3.6)

which after renormalization becomes

Γσ [ψR,ψ†
R,A] = c4ZNR

σ ZNR
2 ZNR

m ψ
†
R

σσσ ·BBB
2MR

ψR . (3.7)

We require that the anomalous chromomagnetic moment in QCD and NRQCD be equal and find
the matching condition

c4ZNR
σ ZNR

2 ZNR
m = 1+bσ (3.8)

and at tree level and one-loop order we find

c(0)
4 = 1 , c(1)

4 = b(1)
σ −δZNR,(1)

σ −δZNR,(1)
2 −δZNR,(1)

m . (3.9)

The NRQCD contribution toc(1)
4 contains a logarithmic IR divergence3α

2π
log(µa), which combines

with the IR logarithm from the QCD result above to yield an overall logarithmic contribution
−3α

2π
log(Ma).
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Besides the ordinary diagrammatic contributions calculated below, we also need to take into

account the contributions from the mean-field improvementU 7→U/u0, which affectδZNR,(1)
σ and

δZNR,(1)
m . Perturbatively,u0 = 1−αsu

(2)
0 , and the contributions from inserting this expansion into

the NRQCD action can be worked out algebraically. The final result for the one-loop correction to
c4 is then

c(1)
4 = 13

6π
−δ Z̃NR,(1)

σ −δ Z̃NR,(1)
2 −δ Z̃NR,(1)

m −δZtad,(1)
m −δZtad,(1)

σ − 3
2π

logMa (3.10)

whereδ Z̃X denotes a finite diagrammatic contribution. We expect the coefficientc4 to be gauge-
parameter independent for on-shell quarks, since it is directly related to the hyperfine splitting,
which is a physical quantity.

4. The four-fermion spin-spin interaction

In NRQCD the hyperfine splitting in thebb̄ system also receives a contribution from the spin-
dependent four-fermion operators generated byQQ̄→QQ̄ scattering in the colour singlet channel.
It is conventional to write these contributions using a Fierz transformation [1, 7]

S4 f = d1
α2

M2(ψ†
χ
∗)(χ

T
ψ)+d2

α2

M2(ψ†
σσσ χ

∗) · (χ
T

σσσψ) , (4.1)

whereψ andχ are the quark and anti-quark fields, respectively, treated as different particle species
with corresponding representations of their spin and colour algebras. The spin-independent con-
tributions tod1 andd2 from QQ̄ scattering are not included as they do not influence the hyperfine
structure. In QCD the two continuum diagrams are shown in figures2(a) and2(b), and in NRQCD
all diagrams in figure2 need to be calculated. The one-loop contributions to the renormalization
constants for the operators in eqn. (4.1) take the form, respectively,

Zf 1 = α2
(

Af 1− log µ

m−
16π

27
m
µ

)
, Zf 2 =−1

3Zf 1. (4.2)

The last term in both expressions is the Coulomb singularity arising from the Coulomb gluon
exchange in figure2(a). For QCD these expressions were verified numerically and for both QCD
and NRQCD were shown to be gauge-parameter independent; there are two independent colour
trace combinations, each of which is separately gauge independent. In the numerical calculations
we used IR subtraction functions to analytically remove both IR and Coulomb divergences; this
greatly improved convergence. For QCD we find

AR
f 1 =

8
27

. (4.3)

The matching parameters for the term in the NRQCD action, including the two-gluon annihilation
contribution tod1 [7], are then

d1 =−3d2−
2
9
(2−2log2) , d2 =

8
81
− 1

3
ANR

f 1 +
1
3

logMa . (4.4)
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Ma 1.9 2.65 3.4

c(1)
4 0.683(13) 0.776(19) 0.817(27)
d1 0.049(1) -0.527(6) -1.186(8)
d2 -0.146(1) 0.130(2) 0.350(2)

Table 1: Renormalization parameters of theσ ·B and the four-fermion terms.

(a)(a) (b)(b)

(c)(c) (d)(d) (e)(e)

Figure 2: Feynman diagrams to be computed in both QCD and NRQCD for matching the four-fermion
terms in the NRQCD action. There are two diagrams with the topology of (c).

5. Implementation and results

To perform the calculation in NRQCD, we employ the HIPPY and HPSRC packages for au-
tomated lattice perturbation theory [8, 9], which we extended to deal with the modifications of the
usual Feynman rules engendered by the use of BFG [10, 11]. For further implementation details
the reader is referred to [12].

For theσσσ ·BBB operator matching we compute the diagrams in figures1 (a)–(f) and for the four-
fermion operator matching we compute the diagrams in figure2. We carried out a number of checks
of the calculation. Firstly, we replicate the known IR logs correctly. We find that the coefficients
of these logs are gauge-parameter independent and, since this is not true of the contributions from
individual diagrams, it provides a strong check. Second, we check that the non-logarithmic part of
the result is similarly gauge-parameter independent where the individual contributions are not. For
matching the four-fermion terms it is vital to employ IR subtraction functions to remove logarithmic
and Coulomb IR singularities. For NRQCD, we used the action from [13] with stability parameter
n = 4, and we used the Symanzik improved gluon action [14], which were also used by the MILC
collaboration [15] whose configurations were used in [13]. We find

δZtad,(1)
m =−

(
2
3 + 3

(Ma)2

)
αsu

(2)
0 (5.1)

The tadpole contribution toδZNR,(1)
σ comes from the mean-field improvement of the improved

field-strength tensor and from the cross-multiplication of the tree-levelσσσ ·BBB term with the tadpole
corrections terms inH0 [13]. The overall result is

δZtad,(1)
σ =

(
13
3 + 13

4Ma−
3

8n(Ma)2 − 3
4(Ma)3

)
.u(2)

0 . (5.2)

We chose the Landau mean link to beu(2)
0 = 0.750 [16]. Our results are shown in table1.

The radiative correction to thegσ ·B term can easily be included in simulations. The correction to
the four-fermion operator can be included by noting that both operators give a contribution to the
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hfs (MeV) Correction hfs (MeV)
Ma αV(q∗) c4 = 1 improvedc4 4-fermion corrected

1.9 0.225 56.1(1) 72.1(1) -1.7(1) 70.4(1)(28)(56)
2.65 0.253 50.5(1) 69.8(1) +4.5(1) 74.3(1)(32)(50)
3.4 0.275 45.6(1) 65.6(1) +10.3(1) 75.9(1)(34)(46)

Table 2: Corrections to the bottomonium hyperfine splitting results of [13] arising from the radiative im-
provement of the action. In the last column the errors are statistical,O(α2), and relativistic corrections.
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Figure 3: Corrected and uncorrected bottomonium hyperfine splitting results. Note that total error is dis-
played with the corrected results, whereas uncorrected results contain purely statistical errors;O(α) errors
would be too large on this scale. PDG data from [17].

hyperfine splitting that is dominated by a contact term. A reasonable estimate for the multiplicative
correction to the tree-level prediction for the hyperfine splitting is then

1 + αV(q∗)
(
− 27

16π
(d1−d2)

)
, (5.3)

where we choseq∗ = π/a. Our results have been applied to the hyperfine splitting of bottomonium
[13] , where we find the corrections given in table2 and summarised in figure3.

6. Conclusion

We have presented the first application of the BF method to lattice NRQCD and have com-
puted the one-loop radiative correction to the coefficient,c4, of theσσσ ·BBB operator and the one-loop
radiative contribution to the coefficients,d1 andd2 of the four-fermion contact operators that affect
the hyperfine structure of heavy quark mesons. The gauge independence of our calculation was
explicitly checked by carrying out both relativistic and non-relativistic calculations in the lattice
theory. This is possible because in BFG all calculations are UV finite. Our results are summarized
in table 1 and in eqns. (3.10) and (4.4). Corrections to thegσ ·B term have been included in
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simulations[13], and we have given an estimate for the contribution of four-fermion corrections to
ϒ−ηb hyperfine splitting. The result is to reduce the lattice spacing dependence to within errors
and to give an estimate for this hyperfine splitting of 70.4(1)(28)(56)MeV to be compared with
the experimental value of 69.3(2.8)MeV [17]. The errors shown are statistical,O(α2), and due
to relativistic corrections, respectively. The elimination ofO(αa2) errors and the agreement with
experiment gives us confidence that the calculations are robust. Our results have been included in
a recent paper on the Upsilon spectrum [18].
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