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1. Introduction

Lattice QCD is a non-perturbative approach to Quantum Chromodynamics (QCD), in fact the

only ab initio first principles approach to the fundamental quantum field theory governing the prop-

erties of hadrons. While the ground-state hadron spectrum is now well understood, a determination

of the excited state energy spectrum is in the process of being revealed with this first principles

approach. The results can be compared with the experimental results or provide predictions for

future experiments. However, gaining knowledge of the excited-state spectrum presents additional

challenges, as the excited energy-states are extracted from the sub-leading exponentials of the cor-

relation functions.

The first positive parity excitation of the nucleon, the N 1
2

+
(1440)P11 or Roper resonance, has

been a subject of extensive interest since its discovery in 1964 through a partial-wave analysis of

pion-nucleon scattering data [1]. In constituent quark models with a harmonic oscillator potential

this P11 state (with principal quantum number N= 2) appears above the lowest-lying odd-parity S11

(1535) state [2, 3], whereas in Nature the Roper resonance is almost 100 MeV below the S11 state.

Due to its surprisingly low mass, the P11 state has held enormous curiosity and speculation in the

nuclear and particle physics community. For example, the Roper resonance has been described as a

hybrid baryon state with explicitly excited gluon field configurations [4, 5], or as a breathing mode

of the ground state [6] or a state which can be described in terms of a five quark (meson-baryon)

state [7].

Several attempts have been made in the past to find the elusive low-lying Roper state in the

lattice framework, however a low-lying Roper state has not been observed. The difficulties lie in

finding effective methods to isolate the energy eigenstates of QCD and in accessing the light quark

mass regime of QCD. A recent review of the Roper state can be found in Ref. [8].

The ‘Variational method’ [9, 10] is the state-of-the-art approach for determining the excited

state hadron spectrum. It is based on the creation of a matrix of correlation functions in which

different superpositions of excited state contributions are linearly combined to isolate the energy

eigenstates. A low-lying Roper resonance was identified with this method using a variety of source

and sink smearings in constructing correlation matrices [11, 12] in quenched QCD. Here we bring

these effective techniques to the dynamics of full QCD to explore the low-lying even-parity states

of the nucleon using 2+1-flavor dynamical QCD gauge-field configurations [13].

Our focus is to present the details of the eigenvector analysis used in reporting our results

for the hadron spectrum of full QCD in Ref. [14]. There, a comprehensive analysis of smeared

source and sink based correlation matrix constructions formed the foundation of our discovery of

a low-lying state associated with the Roper resonance.

2. Variational Method

The variational method is based on the formulation of a correlation matrix. In constructing our

correlation matrix for the nucleon spectrum, we consider the two-point correlation function matrix
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with momentum ~p = 0

G±
i j(t) = ∑

~x

Trsp {Γ± 〈Ω|χi(x) χ̄ j(0)|Ω〉}

= ∑
α

λ α
i λ̄ α

j e
−mα t , (2.1)

where Dirac indices are implicit. Here, λ α
i and λ̄ α

j are the couplings of the interpolators χi and

χ̄ j at the sink and source respectively and α enumerates the energy eigenstates with mass mα .

Γ± = 1
2
(γ0±1) projects the parity of the eigenstates.

Since the only t dependence comes from the exponential term, one can seek a linear superpo-

sition of interpolators, ∑ j χ̄ ju
α
j , such that

Gi j(t0 +△t)uα
j = e−mα△tGi j(t0)u

α
j , (2.2)

for sufficiently large t0 and t0+△t. uα
j are the coefficients multiplying the interpolator χ̄ j such that

state α is created. One can also seek the coefficients vα
i multiplying χi to annihilate the state α .

This leads to solving right and left eigenvalue equations

[(G(t0))
−1G(t0 +△t)]i j u

α
j = cα uα

i , (2.3)

vα
i [G(t0 +△t)(G(t0))

−1]i j = cα vα
j . (2.4)

The vectors vα
i and uα

j diagonalize the correlation matrix at time t0 and t0 +△t providing the

eigenstate projected correlator, vα
i G

±
i j(t)u

β
j ∝ δ αβ . We define the parity and eigenstate projected

correlator

Gα
± ≡ vα

i G
±
i j(t)u

α
j , (2.5)

which is analyzed using standard techniques to obtain the masses of different energy states.

3. Simulation Details

The PACS-CS 2+ 1 flavor dynamical-fermion configurations [13] made available through

the ILDG [15] are used in this analysis. These configurations use the non-perturbatively O(a)-

improved Wilson fermion action and the Iwasaki-gauge action [16]. The lattice volume is 323×64,

with β = 1.90 providing a lattice spacing a = 0.0907 fm.

Five values of the (degenerate) up and down quark masses are considered, with hopping pa-

rameter values of κud = 0.13700,0.13727,0.13754,0.13770 and 0.13781, providing pion masses

in the range of 702 - 156 MeV; for the strange quark κs = 0.13640. Ensembles of 350 configu-

rations are considered for the four heavier quarks and for the lightest quark an ensemble of 198

configurations is used with a total of 750 fermion sources.

We consider three standard nucleon interpolators χ1(x) ,χ2(x)andχ4(x) [17]. The correlation

matrices are constructed using an extensive sample of different levels of gauge-invariant Gaus-

sian smearing [18] at the fermion source and sink [14]. Among several combinations, a basis of

smearing-sweep counts of 16, 35, 100 and 200 is considered as the representative, from which

correlation-matrix analyses are performed.
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Table 1: The scalar product~vα(mq) ·~v
β (mq) for κ = 0.13700 for an 8× 8 correlation matrix of χ1 and χ2

with four different levels of smearing. States are ordered from left to right and top to bottom in order of

increasing excited-state mass.

1.00 -0.09 0.02 0.06 0.65 0.02 -0.31 0.00

-0.09 1.00 -0.01 -0.05 -0.06 -0.57 0.03 -0.14

0.02 -0.01 1.00 -0.06 0.06 0.05 0.44 -0.02

0.06 -0.05 -0.06 1.00 0.12 -0.05 -0.11 0.57

0.65 -0.06 0.06 0.12 1.00 0.02 -0.61 0.03

0.02 -0.57 0.05 -0.05 0.02 1.00 0.08 0.15

-0.31 0.03 0.44 -0.11 -0.61 0.08 1.00 -0.07

0.00 -0.14 -0.02 0.57 0.03 0.15 -0.07 1.00

4. Eigenstate Identification

Let us consider M interpolating fields making an M×M parity-projected correlation matrix

G(t). In solving the generalized eigenvalue equations of Eqs. (2.3) and (2.4) we encounter the real

and approximately symmetric matrices [(G(t0))
−1G(t0 +△t)] and [G(t0 +△t)(G(t0))

−1]. Thus

we expect the eigenvectors of these matrices to be approximately orthogonal.

Using the normalization ∑M
i |vα

i |
2 = 1, we explore the extent to which the eigenvectors~vα(mq)

for light-quark mass mq are orthogonal by reporting values for ~vα(mq) ·~v
β (mq) in Table 1. By

construction, this quantity is 1 for α = β and we observe~vα(mq) ·~v
β (mq) is significantly different

from 1 for α 6= β .

This feature enables the use of the generalised measure

V
αβ (mq,mq′) =~vα(mq) ·~v

β (mq′) (4.1)

to identify the states most closely related as we move from quark mass mq to adjacent quark mass

mq′ . Results for this generalized measure of eigenvector overlap are presented in Table 2. For each

value of α there is only one value for β where the magnitude of the entry is significantly larger than

all others. The most relevant entries for consideration are the immediate neighbours of α where

a crossing of the energy levels would move the largest entry off the diagonal. Thus this measure

provides a clear identification of how states in the hadron spectrum at quark mass mq are associated

with states at the next value of quark mass, mq′ .

For each value of α (or β ) considered, the entry in the row (or column) with a magnitude

closest to one occurrs for β = α . In this case, there are no level crossings in the spectrum as one

moves from quark mass mq to mq′ . Level crossings would otherwise reveal themselves as pairs of

large-magnitude off-diagonal entries in the matrix.

The values of Table 2 are representative of the values seen for other pairs of quark masses

and also for the right eigenvectors ~uα(mq). Because most of the large entries have a magnitude

approaching one, there are typically small changes in the eigenvectors as one moves form one

quark mass to the next. Thus, one anticipates a fairly smooth flow of the eigenvector values ~vα as

a function of the quark mass.
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Table 2: The scalar product ~vα(mq) ·~v
β (mq′) for κ = 0.13700 and κ ′ = 0.13727 for an 8× 8 correlation

matrix of χ1 and χ2 with four different levels of smearing. States are ordered from left to right for mq′ and

top to bottom for mq in order of increasing excited-state mass.

0.97 -0.30 -0.03 -0.27 0.63 0.03 -0.30 0.01

-0.21 -0.92 0.17 0.13 -0.04 -0.11 0.44 -0.03

-0.09 0.06 0.95 -0.20 -0.06 0.51 0.04 -0.10

0.10 0.03 -0.19 -0.72 0.11 -0.28 -0.12 0.59

0.58 -0.46 0.04 -0.45 0.99 0.06 -0.60 0.05

0.00 -0.06 -0.40 0.52 0.01 -0.85 0.05 0.07

-0.40 -0.13 0.05 0.42 -0.72 -0.20 1.00 -0.10

0.04 0.03 -0.17 -0.07 0.04 -0.61 -0.10 1.00

5. Quark-mass flow of Eigenvectors and Eigenstates

A key feature of large correlation matrices is the ability to identify and isolate energy eigen-

states which are nearly degenerate in energy. However, this approximate degeneracy makes it

difficult to trace the flow of states from one quark mass to the next. Thus a clear identification of

these near-degenerate states through the features of the eigenvectors isolating the states is necessary

in order to trace the propagation of the states from the heavy to the light quark-mass region.

The anticipated smooth flow of the eigenvectors as a function of the quark mass is presented

in Fig. 1. It is evident that each energy state has its own eigenvector characteristics. While the

quark-mass dependent trends can be significant, they are sufficiently smooth to allow the visual

identification of eigenstates at adjacent quark masses. We note that state 1 is the ground state and

state 2 is the Roper state.

In Fig. 2, masses are presented for 12 energy eigenstates. The colours and shapes of the sym-

bols identify states having similar eigenvectors as illustrated in Fig. 1. While the eigenvectors for

the first excited state (state 2 in Fig. 1) have a significant quark-mass dependence that is smoothly

varying over the quark mass range considered, the baryon masses obtained for this state do not

vary smoothly. For the two large quark masses, the results sit close to the P-wave Nπ scattering

threshold whereas the masses for the lighter three quark masses sit much higher.

A possible explanation for this feature is that the attractive mass-dependent and spin-dependent

forces which are necessary for the formation of a strong resonance only have sufficient strength

at light quark masses. For example, it is typical to encounter spin-dependent forces which are

inversely proportional to the product of the quark masses undergoing gluon exchange. At light

quark masses, resonances dominate the spectral function whereas at heavy quark masses, only the

multiparticle states have spectral strength sufficient to be seen in the spectrum.

Future calculations should investigate the use of five-quark operators to better explore overlap

with the multiparticle states in the light quark-mass region. Already, novel work using the stochas-

tic LapH method is in progress [19]. It will also be interesting to explore the first excited state on

a large volume lattice to better understand the relationship between this state with its neighbouring

scattering states.
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Figure 1: (Color online). Eigenvector components for the five different quark masses are presented after

identifying eigenstates via ~vα(mq) ·~v
β (mq′). For each energy eigenstate, the eigenvector components are

plotted in order of increasing quark mass. In the legend, (v1, v2), (v3, v4), (v5, v6) and (v7, v8) correspond

to the smearing-sweep levels of 16, 35, 100 and 200 respectively. Odd numbers in the subscripts of v

correspond to the contribution from the χ1 interpolator, whereas, even numbers correspond to χ2. Similar

results are observed for the right eigenvectors.
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