Decay of ρ and a_{1} mesons on the lattice using distillation

Sasa Prelovsek*
Jozef Stefan Institute and Department of Physics at University of Ljubljana, Ljubljana, Slovenia E-mail: sasa.prelovsek@ijs.si
C. B. Lang
Institut für Physik, FB Theoretische Physik, Universität Graz, A-8010 Graz, Austria
E-mail: christian.lang@uni-graz.at
\section*{Daniel Mohler}
TRIUMF, 4004 Wesbrook Mall Vancouver, BC V6T 2A3, Canada
E-mail: mohler@triumf.ca
Matija Vidmar
Jozef Stefan Institute, Ljubljana, Slovenia

We extract the P -wave $\pi \pi$ phase shift for five values of pion relative momenta, which gives information on the ρ resonance. The Breit-Wigner formula describes the $\pi \pi$ phase shift dependence nicely and we extract $m_{\rho}=792(7)(8) \mathrm{MeV}$ and the coupling $g_{\rho \pi \pi}=5.13(20)$ at our $m_{\pi}=266$ MeV . We extract the P-wave scattering length $a_{l=1}^{\pi \pi}=0.082(10)(3) \mathrm{fm}^{3}$ from the state with the lowest pion relative momenta.
We also determine the S-wave $\rho \pi$ phase shift for two values of relative momenta, which provides parameters of the lowest axial resonance $a_{1}(1260)$. Using the Breit-Wigner fit we extract $m_{a 1}=$ $1.44(4) \mathrm{GeV}$ and the coupling $g_{a_{1}} \rho \pi=1.1(3) \mathrm{GeV}$. From the lowest state we also extract the $\rho \pi$ scattering length $a_{l=0}^{\rho \pi}=0.23(12) \mathrm{fm}$ for our m_{π}.
The simulation is performed using one $N_{f}=2$ ensemble of gauge configurations with cloverimproved Wilson quarks. The phase shifts are determined from the lowest two energy-levels, which are obtained by the variational analysis with a number of quark-antiquark and mesonmeson interpolators. The correlation functions are calculated using the distillation method with the Laplacian Heaviside (LapH) smearing of quarks.

XXIX International Symposium on Lattice Field Theory
July 10-16 2011
Squaw Valley, Lake Tahoe, California

[^0]
1. Introduction

Extracting the width of a hadronic resonance R from lattice QCD is challenging. The only proper method used up to now applies to resonances R that appear in the elastic scattering of two hadrons $H_{1} H_{2} \rightarrow R \rightarrow H_{1} H_{2}$. First the elastic phase shift $\delta(s)$ for $H_{1} H_{2}$ scattering has to be determined from the lattice for several values of $s=E_{C M}^{2}=E^{2}-\mathbf{P}^{2}$, where E and \mathbf{P} are the energy and the total momentum of the $H_{1} H_{2}$ system. Lüscher has shown that the energy E of two hadrons in a box of size $L \simeq$ few fm provides the value of the infinite-volume elastic phase shift $\delta(s)$ at $s=E^{2}-\mathbf{P}^{2}$ [1]. His relation between δ and E for $\mathbf{P}=0$ was generalized to $\mathbf{P} \neq 0$ in [2, 3, 4]. In practice, one or two lowest energy levels E are extracted and a few choices of \mathbf{P} are used in order to extract $\delta(s)$ at different values of $s=E^{2}-\mathbf{P}^{2}$.

The resulting $\delta(s)$ can be fit with a Breit-Wigner (or any other desired) form, where both are related via the scattering amplitude a_{l} for the l-th partial wave
$a_{l}=\frac{-\sqrt{s} \Gamma_{R}(s)}{s-m_{R}^{2}+i \sqrt{s} \Gamma_{R}(s)}=\frac{e^{2 i \delta(s)}-1}{2 i} \quad$ or $\quad \sqrt{s} \Gamma_{R}(s) \cot \delta(s)=m_{R}^{2}-s, \quad \Gamma_{R}(s) \propto g_{R H_{1} H_{2}}^{2} \frac{p^{* 2 l+1}}{s}$
and p^{*} is the momentum of H_{1} and H_{2} in their center-of-momentum (CMF) frame. This relation can be used to extract the mass m_{R} and the width $\Gamma_{R}=\Gamma_{R}\left(m_{R}^{2}\right)$ of the resonance from lattice data on $\delta(s)$. The width depends significantly on the phase space and therefore on m_{π}, so it is common to extract the coupling $g_{R H_{1} H_{2}}$, which is expected to depend only mildly on m_{π}.

Among all the meson resonances only the ρ meson width has been determined properly using this method. The first lattice determination was done by PACS-CS in 2007 [5]. Since then, several studies of the ρ have been carried out [6, 7], with the most recent ones [8, 9, 10]. In this talk we present our recent study of the ρ [9], which achieves the smallest statistical errors (on one ensemble only, however) on the resulting $\delta(s), m_{\rho}$ and Γ_{ρ} due to several improvements listed below.

We also extract the S-wave $\rho \pi$ elastic phase shift, which enables us to extract the mass $m_{a 1}$ and the width $\Gamma_{a 1}$ of the lowest lying axial resonance $a_{1}(1260)$. The lattice study of this resonance is especially welcome as the experimental knowledge on it is very poor: the width has a wide range $\Gamma_{a 1}^{\exp }=250-600 \mathrm{MeV}$ [11], and none of its branching ratios have been reliably determined ${ }^{1}$ [11]. To our knowledge, this is the first lattice study aimed at the $\rho \pi$ scattering and $\Gamma_{a 1}$.

2. Lattice simulation

We use $280 N_{f}=2$ configurations with tree-level clover-improved Wilson dynamical and valence quarks, corresponding to $m_{\pi} a=0.1673(16)$ or $m_{\pi}=266(3)(3) \mathrm{MeV}$ [12]. The lattice spacing $a=0.1239$ (13) fm was determined using the Sommer parameter r_{0} [9] and our $N_{L}^{3} \times N_{T}=16^{3} \times 32$ is rather small, allowing us to use the powerful but costly full distillation method [13]. We combine periodic and anti-periodic propagators in time to reduce the finite N_{T} effects [9].

[^1]

Figure 1: Contractions for our ρ and a_{1} correlators with $\bar{q} q$ and meson - meson interpolators $(I=1)$.

3. ρ resonance and $\pi \pi$ phase shift

The details of our lattice simulation aimed at $\pi \pi$ phase shifts and the ρ resonance have been published in [9]. In this talk, we emphasize the most important steps and results.

The $\pi^{+} \pi^{-} \rightarrow \rho^{0} \rightarrow \pi^{+} \pi^{-}$scattering is elastic below the 4π threshold $\sqrt{s}<4 m_{\pi}$ and we can apply Lüscher's method. We determine the lowest two energy-levels of the $\rho^{0} \leftrightarrow \pi^{+} \pi^{-}$coupled system with $J^{P C}=1^{--}$and $\left|I, I_{3}\right\rangle=|1,0\rangle$ for the following cases of total momentum P

\mathbf{P}	group	irrep	decay
$\mathbf{0}$	O_{h}	T_{1}^{-}	$\rho_{\mathbf{3}}(\mathbf{0}) \rightarrow \pi\left(\mathbf{e}_{\mathbf{3}}\right) \pi\left(-\mathbf{e}_{\mathbf{3}}\right)$
$\frac{2 \pi}{L} \mathbf{e}_{\mathbf{3}}$	$D_{4 h}$	A_{2}^{-}	$\rho_{\mathbf{3}}\left(\mathbf{e}_{\mathbf{3}}\right) \rightarrow \pi\left(\mathbf{e}_{\mathbf{3}}\right) \pi(\mathbf{0})$
$\frac{2 \pi}{L}\left(\mathbf{e}_{\mathbf{1}}+\mathbf{e}_{\mathbf{2}}\right)$	$D_{2 h}$	B_{1}^{-}	$\rho_{\mathbf{1}, \mathbf{2}}\left(\mathbf{e}_{\mathbf{1}}+\mathbf{e}_{\mathbf{2}}\right) \rightarrow \pi\left(\mathbf{e}_{\mathbf{1}}+\mathbf{e}_{\mathbf{2}}\right) \pi(\mathbf{0})$

and all permutations in direction \mathbf{P} and ρ-polarization. We display the symmetry group, the irreducible representation and the decay mode, which applies to three cases of $\mathbf{P}[2,4,8,9]$.

Other simulations aimed at Γ_{ρ} used at most one quark-antiquark interpolator and one $\pi \pi$ interpolator for each \mathbf{P}. We use 15 quark-antiquark interpolators $\mathscr{O}_{i=1-5}^{s=n, m, w}$ and one $\pi \pi$ interpolator for each \mathbf{P}, where each pion is projected to a definite momentum:

$$
\begin{align*}
\mathscr{O}_{i=1, \ldots, 5}^{s}(t) & =\sum_{\mathbf{x}} \frac{1}{\sqrt{2}}\left[\bar{u}_{s}(x) \mathscr{F}_{i} \mathrm{e}^{\mathrm{i} \mathbf{P x}} u_{s}(x)-\bar{d}_{s}(x) \mathscr{F}_{i} \mathrm{e}^{\mathbf{i P \mathbf { x }}} d_{s}(x)\right] \quad(s=n, m, w), \tag{3.1}\\
\mathscr{O}_{6}^{n}(t) & =\frac{1}{\sqrt{2}}\left[\pi^{+}\left(\mathbf{p}_{1}\right) \pi^{-}\left(\mathbf{p}_{2}\right)-\pi^{-}\left(\mathbf{p}_{\mathbf{1}}\right) \pi^{+}\left(\mathbf{p}_{2}\right)\right], \quad \pi^{ \pm}\left(\mathbf{p}_{\mathbf{i}}\right)=\sum_{\mathbf{x}} \bar{q}_{n}(x) \gamma_{5} \tau^{ \pm} \mathrm{e}^{\mathrm{i} \mathbf{p}_{\mathbf{i}}} q_{n}(x) .
\end{align*}
$$

Quark-antiquark interpolators have five different color-spin-space structures \mathscr{F}_{i}. The quarks are smeared using the Laplacian Heaviside (LapH) smearing proposed in [13], i.e.,

$$
\begin{equation*}
q_{s} \equiv \Theta\left(\sigma_{s}^{2}+\nabla^{2}\right) q=\sum_{k=1}^{N_{v}} \Theta\left(\sigma_{s}^{2}+\lambda^{(k)}\right) v^{(k)} v^{(k) \dagger}, \quad s=n(\text { narrow }), m(\text { middle }), w(\text { wide }), \tag{3.2}
\end{equation*}
$$

where different truncations $N_{v}=96,64,32$ correspond to three different widths $s=n, m, w[9]$.
The 16×16 correlation matrix $C_{i j}\left(t_{f}, t_{i}\right)=\langle 0| \mathscr{O}_{i}\left(t_{f}\right) \mathscr{O}_{j}^{\dagger}\left(t_{i}\right)|0\rangle$ necessitates the inclusion of the contractions in Fig. 1. The contractions were computed using the full distillation method, which is based on the LapH smeared quarks (3.2) [13] and leads to relatively precise results for all types of contractions in Fig. 1. We apply this method for the first time to extract a meson width. We also propose how to apply it for interpolators with different smearing widths in the same variational basis [9]. All correlators are expressed in terms of the so-called perambulators in Appendix A of [9]. The resulting correlators are averaged over all source time-slices t_{i}, over all directions of \mathbf{P} and ρ polarization.

The lowest two energies of the system are determined using the Generalized Eigenvalue Method (GEVP) [14] and the dependence on the choice of the interpolators in the variational basis is explored in [9]. The lowest energy level is robust to this choice. We find that the first excited energy

Figure 2: The phase shift δ (in degrees) for $\pi \pi$ scattering in P -wave and $\left(\left(a p^{*}\right)^{3} / \sqrt{s a^{2}}\right) \cot \delta$ as a function of s, together with a Breit-Wigner fit.
level cannot be reliably obtained without the $\pi \pi$ interpolator in the basis, and that more than two interpolators are required at least in the case $P=\frac{2 \pi}{L}(1,1,0)$. The extracted six energy levels for our preferred interpolator choice [9] are given in Table III of [9].

Each of the six energy levels gives the value of the phase shift $\delta(s)$ at $s=E^{2}-\mathbf{P}^{2}\left(^{2}\right)$ via the Lüscher formula for $\mathbf{P}=0$ or its generalization to $\mathbf{P} \neq 0[2,4]$. We independently confirmed the needed relations and compiled them in [9]. One of these levels, $E_{2}(\mathbf{P}=0)$, is above the inelastic threshold $\sqrt{s}>4 m_{\pi}$ and we omit it from further analysis.

The resulting phase shifts for five different values of s are plotted in Fig. 2. The phase shift has relatively small errors and exhibits a resonating behavior, which allows us to extract m_{ρ} and Γ_{ρ} or rather the coupling $g_{\rho \pi \pi}$. We use the Breit-Wigner relation (1.1) together with $\Gamma(s) \equiv g_{\rho \pi \pi}^{2} p^{* 3} /(6 \pi s)$, which leads to

$$
\begin{equation*}
\frac{p^{* 3}}{\sqrt{s}} \cot \delta(s)=\frac{6 \pi}{g_{\rho \pi \pi}^{2}}\left(m_{\rho}^{2}-s\right) . \tag{3.3}
\end{equation*}
$$

This allows a linear fit in s (Fig. 2) to extract m_{ρ} and $g_{\rho \pi \pi}$ given in Table 1. The resulting $m_{\rho} a=$ $0.4972(42)$ is slightly lower than the naive value $m_{\rho}^{\text {naive }} a=0.5107(40)$, which is extracted from the ground state with $\mathbf{P}=0$. We also extract the P -wave scattering length $a_{l=1}^{\pi \pi}=0.082(10)(3) \mathrm{fm}^{3}$ (defined as $\left.a_{l} \equiv \lim _{\delta \rightarrow 0} \delta\left(p^{*}\right) / p^{* 2 l+1}[15]\right)$ from the state with the lowest ${ }^{3} p^{*} a=0.1076(36)$ and $\delta=3.03(6)^{\circ}$. This qunatity is not directly measured, so we compare it to the typical value $a_{l=1}^{\pi \pi} \simeq$ $0.038(2)\left(m_{\pi}^{\text {phy }}\right)^{-3}$ obtained by combining experiment and ChPT or Roy equations [15].

A comparison of the resulting m_{ρ} and $g_{\rho \pi \pi}$ to two recent lattice simulations $[8,10]$ is compiled in [10]. The $N_{f}=2$ simulation with twisted mass quarks [8] and the $N_{f}=2+1$ simulation with Wilson quarks were done at four/two values of m_{π} and explicitly demonstrate the mild dependence of $g_{\rho \pi \pi}$ on m_{π}. All three results on $g_{\rho \pi \pi}$ are relatively close to each other and close to the $g_{\rho \pi \pi}^{e x p}=5.97$ extracted from $\Gamma_{\rho}^{\text {exp }}$. The resonance mass m_{ρ} of $[10]$ is $\simeq 11 \%$ higher than ours, while m_{ρ} of $[8]$ is $\simeq 21 \%$ higher than ours, at comparable m_{π}. Note that all three simulations get the resonance m_{ρ} within 3% from the value of $m_{\rho}^{\text {naive }}$, which implies that the simulations differ already in $m_{\rho}^{\text {naive }}$. Possible causes for different $m_{\rho}^{\text {naive }}$ could be discretization effects or scale fixing of all

[^2]| | $m_{\rho}[\mathrm{MeV}]$ | $g_{\rho \pi \pi}$ | $a_{l=1}^{\pi \pi}$ | $m_{a 1}[\mathrm{GeV}]$ | $g_{a_{1} \rho \pi}[\mathrm{GeV}]$ | $a_{l=0}^{\rho \pi}[\mathrm{fm}]$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| latt | $792(7)(8)$ | $5.13(20)$ | $0.082(10)(3)$ | $1.44(4)$ | $1.1(3)$ | $0.23(12)$ | using m_{ρ} |
| | | | | $1.43(5)$ | $1.7(4)$ | $0.56(23)$ | using $m_{\rho}^{\text {naive }}$ |
| exp | 775.5 | 5.97 | $0.108(5)^{*}$ | $1.23(4)$ | $<1.35(30)$ | not meas. | |

Table 1: Our lattice results for the resonance properties [9], compared to the experimental values. The results related to a_{1} depend on the choice of the input ρ mass: m_{ρ} or $m_{\rho}^{\text {naive }}$. The experimental value of $a_{l=1}^{\pi \pi}$ is obtained combining experiment with ChPT or Roy equations.
three simulations, flavor breaking of twisted mass quarks [8] or partial quenching of the strange quark [8, 9]. Additional causes for the different m_{ρ} values could be the small interpolator basis in [8,10$]$ or the small box $L \simeq 2 \mathrm{fm}$ in [9]. The exponentially suppressed terms, which are neglected in Lüscher formulae, may not be completely negligible for our $L \simeq 2 \mathrm{fm}$, which is a systematic uncertainty of our simulation. We are planing a simulation at larger L to explore possible finite size effects. We believe, however, that our small L does not influence our $m_{\rho}^{\text {naive }}$, as the first excited state $\pi(2 \pi / L) \pi(-2 \pi / L)$ at $\mathbf{P}=0$ hardly affects the $m_{\rho}^{\text {naive }}$ ground state.

Our $\delta(s)$ agrees reasonably well with the prediction of the lowest ${ }^{4}$ order of Unitarized Chiral Perturbation Theory [16], which has been recalculated for our $m_{\pi}=266 \mathrm{MeV}$.

4. The $\rho \pi$ phase shift and a_{1} resonance

We study the S-wave scattering of $\rho \pi$, where the resonance $a_{1}(1260)$ appears, for the total momentum $\mathbf{P}=0$. The scattering is elastic at least until $a_{1}(1260)$ on our lattice since $\bar{K}^{*} K$ cannot be created on our $N_{f}=2$ ensemble. The ground scattering state is $\rho(\mathbf{0}) \pi(\mathbf{0})$ in the non-interacting limit. The scattering particle $\rho(\mathbf{0})$ is almost stable on our lattice, since its lowest decay channel $\pi(2 \pi / L) \pi(-2 \pi / L)$ is significantly higher in energy.

We use 9 quark-antiquark interpolators $\mathscr{O}_{i=1-3}^{s=n, m, w}$ and one $\rho(\mathbf{0}) \pi(\mathbf{0})$ interpolator, all with $J^{P C}=$ $1^{++},\left|I, I_{3}\right\rangle=|1,0\rangle$ and $\mathbf{P}=0$:

$$
\begin{align*}
& \mathscr{O}_{1}^{s}(t)=\sum_{\mathbf{x}, i} \frac{1}{\sqrt{2}} \bar{u}_{s}(x) A_{i} \gamma_{i} \gamma_{5} \mathrm{e}^{\mathbf{i P \mathbf { x }}} u_{s}(x)-\left\{u_{s} \leftrightarrow d_{s}\right\} \quad(s=n, m, w), \tag{4.1}\\
& \mathscr{O}_{2}^{s}(t)=\sum_{\mathbf{x}, i, j} \frac{1}{\sqrt{2}} \bar{u}_{s}(x) \overleftarrow{\nabla}_{j} A_{i} \gamma_{i} \gamma_{5} \mathrm{e}^{\mathrm{i} \mathbf{P x}} \vec{\nabla}_{j} u_{s}(x)-\left\{u_{s} \leftrightarrow d_{s}\right\} \quad(s=n, m, w), \\
& \mathscr{O}_{3}^{s}(t)=\sum_{\mathbf{x}, i, j, k} \frac{1}{\sqrt{2}} \varepsilon_{i j l} \bar{u}_{s}(x) A_{i} \gamma_{j} \frac{1}{2}\left[\mathrm{e}^{\mathrm{i} \mathbf{P x}} \vec{\nabla}_{l}-\overleftarrow{\nabla} \overleftarrow{\nabla}_{l} \mathrm{e}^{\mathbf{i P x}}\right] u_{s}(x)-\left\{u_{s} \leftrightarrow d_{s}\right\} \quad(s=n, m, w), \\
& \mathscr{O}_{4}^{n}(t)=\frac{1}{\sqrt{2}}\left[\pi^{+}(\mathbf{0}) \rho^{-}(\mathbf{0})-\pi^{-}(\mathbf{0}) \rho^{+}(\mathbf{0})\right], \quad \pi^{ \pm}(\mathbf{0})=\sum_{\mathbf{x}} \bar{q}_{n} \gamma_{5} \tau^{ \pm} q_{n}, \quad \rho^{ \pm}(\mathbf{0})=\sum_{\mathbf{x}} \bar{q}_{n} A_{i} \gamma_{i} \tau^{ \pm} q_{n},
\end{align*}
$$

where ∇ is the covariant derivative. The contractions in Fig. 1 are calculated using the full distillation method and averaged over all source time slices t_{i} and all a_{1} polarizations \mathbf{A}.

The effective mass for the lowest two eigenvalues are shown in Fig. 3 and the resulting E and p^{*} are given in Table 2. The CMF momentum p^{*} is extracted using $E=\sqrt{p^{* 2}+m_{\pi}^{2}}+\sqrt{p^{* 2}+m_{\rho}^{2}}$:

[^3]

Figure 3: The effective mass for lowest two eigenvalues in a_{1} channel (left). The combination $p^{*} \cot \delta / \sqrt{s}$ as a function of $s=E^{2}-\mathbf{P}^{2}$, where δ is $\rho \pi$ phase shift in S -wave (right).
it is imaginary for the ground state below $m_{\pi}+m_{\rho}$ threshold, and real for the first excited state. We take two choices for the input ρ mass: our main results are based on the resonance mass m_{ρ} (green lines in Fig. 3), while $m_{\rho}^{\text {naive }}$ is taken for comparison (blue lines in Fig. 3).

The S-wave phase shift δ for $\mathbf{P}=0$ is extracted using the well known Lüscher relation [1]

$$
\begin{equation*}
p^{*} \cot \delta=\frac{2}{\sqrt{\pi} L} Z_{00}\left(1,\left(\frac{p^{*} L}{2 \pi}\right)^{2}\right) \xrightarrow{p^{*} \rightarrow 0} \frac{1}{a_{l=0}^{\rho \pi}}, \tag{4.2}
\end{equation*}
$$

which applies above and below threshold. The results are compiled in Table 2 for both choices of ρ mass. The first excited level gives $\delta \approx 90^{\circ}$, so it is sitting close to the top of the a_{1} resonance and $m_{a 1} \approx E_{2}$ holds. The ground state with imaginary p^{*} gives imaginary δ, but the product $p^{*} \cot \delta$ is real since $Z_{00}\left(1,\left(\frac{p^{*} L}{2 \pi}\right)^{2}\right)$ is real.

We parametrize $\Gamma_{a 1}(s) \equiv g_{a_{1} \rho \pi}^{2} p^{*} / s$ and apply the Breit-Wigner relation (1.1) to get

$$
\begin{equation*}
\frac{p^{*}}{\sqrt{s}} \cot \delta(s)=\frac{1}{g_{a_{1} \rho \pi}^{2}}\left(m_{a 1}^{2}-s\right) \tag{4.3}
\end{equation*}
$$

which applies in the vicinity of the resonance above or below threshold. Given the values of $p^{*} \cot \delta$ at two different values of s, we apply a linear fit (4.3) in s (shown in Fig. 3) to extract $m_{a 1}$ and $g_{a_{1} \rho \pi}$. The results are compiled in Table 1. Our $m_{a 1}$ at $m_{\pi}=266 \mathrm{MeV}$ is about 14% higher than the experimental resonance $a_{1}(1260)$. The first lattice result for $g_{a_{1}} \rho \pi$ is valuable, since this coupling is not known experimentally. None of the a_{1} branching ratios have been measured, so we provide only the upper limit for $g_{a_{1} \rho \pi}^{\exp }$ resulting from the total width $\Gamma_{a 1}^{\exp }=250-600 \mathrm{MeV}$. Our lattice result $g_{a_{1} \rho \pi}=1.1(3) \mathrm{GeV}$ is in agreement with the value $g_{a_{1} \rho \pi}^{p h e n} \approx 0.9 \mathrm{GeV}$ obtained using Unitarized Effective Field Theory approach [17] and converted to our convention. We extract also $a_{l=0}^{\rho \pi}$ from the ground state, which is sufficiently close to the threshold. The scattering experiment cannot be carried out since ρ is a quickly decaying particle, so we compare our $a_{l=0}^{\rho \pi}\left(m_{\pi}=266 \mathrm{MeV}\right)=$ $0.23(12)$ fm to $a_{l=0}^{\rho \pi}\left(m_{\pi}^{p h y}\right) \approx 0.37 \mathrm{fm}$ obtained from Unitarized Effective Field Theory [18].

5. Conclusions

The lattice extraction of the phase shifts for elastic scattering has recently become possible also for the attractive resonant channels. We simulated the scattering in the ρ and a_{1} channels and

level	fit	$E a=\sqrt{s} a$	$p^{*} a$	δ	$p^{*} \cos (\delta) / \sqrt{s}$	
1	$7-10$	$0.6468(73)$	i $0.065(13)$	i 7.1(54)	$0.82(44)$	(using m_{ρ})
			i $0.086(9)$	i $23(14)^{\circ}$	$0.34(14)$	(using $m_{\rho}^{\text {naive }}$)
2	$6-9$	$0.897(13)$	$0.280(10)$	$83.7(59)^{\circ}$	$0.034(33)$	(using m_{ρ})
			$0.272(10)$	$88.9(59)^{\circ}$	$0.005(31)$	(using $m_{\rho}^{\text {naive }}$)

Table 2: The results for the $a_{1} \leftrightarrow \pi \rho$ coupled channel with interpolators $\mathscr{O}_{1,2,4}^{n}$ and GEVP reference time $t_{0}=5$. The ground state is below $\rho \pi$ threshold, so p^{*} and δ are imaginary, while the $p^{*} \cot \delta$ is real.
extracted the mass and the width of these two resonances as well as the scattering lengths in the corresponding meson-meson channels.

Acknowledgments

We would like to thank A. Hasenfratz for providing the gauge configurations used for this work and A. Rusetsky for valuable discussions related to the a_{1} channel. We would also like to thank G . Colangelo, G. Engel, X. Feng, N. Ishizuka, E. Oset, L. Roca, G. Schierholz and R. Woloshyn for helpful discussions. This work is supported by ARRS and by the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

[1] M. Lüscher, Nucl. Phys. B 354 (1991) 531; Nucl. Phys. B 364 (1991) 237.
[2] K. Rummukainen and S. Gottlieb, Nucl. Phys. B 450 (1995) 397.
[3] C. Kim, C. Sachrajda and S. Sharpe, Nucl. Phys. B727 (2005) 218.
[4] X. Feng, K. Jansen, D.B. Renner, PoS LAT 2010 (2010) 104, arXiv:1104.0058.
[5] S. Aoki et al., CP-PACS coll., Phys. Rev. D 76 (2007) 094506.
[6] M. Göckeler et al., QCDSF coll., PoS LAT (2008) 136, arXiv:0810.5337.
[7] J. Frison et al., BMW coll., PoS LAT (2010) 139, arXiv:1011.3413.
[8] X. Feng, K. Jansen and D.B. Renner, Phys. Rev. D (2011) 094505.
[9] C.B. Lang, D. Mohler, S. Prelovsek, M. Vidmar, Phys. Rev. D 84 (2011) 054503, arXiv:1105.5636.
[10] S. Aoki et al., PACS-CS coll., arXiv:1106.5365.
[11] K. Nakamura et al. (Particle Data Group), J. Phys. G37 (2010) 075021.
[12] A. Hasenfratz et al., Phys. Rev. D 78 (2008) 054511, Phys. Rev. D78 (2008) 014515.
[13] M. Peardon et al., Phys. Rev. D 80 (2009) 054506, arXiv:0905.2160.
[14] M. Lüscher and U. Wolff, Nucl. Phys. B 339 (1990) 222; B. Blossier et al., JHEP 0904 (2009) 094.
[15] J. Pelaez and F. Yndurain, Phys. Rev. D71 (2005) 074016; G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B603 (2001) 125; Kaminski et al., Phys. Lett. B551 (2003) 241.
[16] J. Nebreda, J.R. Pelaez and G. Rios, Phys. Rev. D 83 (2011) 094011; arXiv:1108.5980.
[17] L. Roca, E. Oset and J. Singh, Phys. Rev. D 72 (2005) 014002.
[18] L. Roca and E. Oset, private communication.

[^0]: *Speaker.

[^1]: ${ }^{1}$ All final states are quoted just as "seen" in [11].

[^2]: ${ }^{2}$ We use the discrete dispersion relation $\cosh (\sqrt{s} a)=\cosh (E a)-2 \sum_{k=1}^{3} \sin ^{2}\left(P_{k} a / 2\right)$ instead of the continuum one $s=E^{2}-\mathbf{P}^{2}$ to analyze the $\rho[9,5]$. We analyze the a_{1} using the continuum dispersion relation.
 ${ }^{3}$ The next state leads to $a_{l=1}^{\pi \pi}$ consistent with the value obtained from the lowest state.

[^3]: ${ }^{4}$ One cannot make a fair comparison between our lattice result and the NLO prediction, since it depends on a number of LECs, and some of them have been fixed using m_{ρ} from another lattice study, which gets a significantly higher m_{ρ}.

