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We extract the P-waveππ phase shift for five values of pion relative momenta, which gives infor-
mation on theρ resonance. The Breit-Wigner formula describes theππ phase shift dependence
nicely and we extractmρ = 792(7)(8) MeV and the couplinggρππ = 5.13(20) at ourmπ = 266
MeV. We extract the P-wave scattering lengthaππ

l=1 = 0.082(10)(3) fm3 from the state with the
lowest pion relative momenta.
We also determine the S-waveρπ phase shift for two values of relative momenta, which provides
parameters of the lowest axial resonancea1(1260). Using the Breit-Wigner fit we extractma1 =

1.44(4) GeV and the couplingga1ρπ = 1.1(3) GeV. From the lowest state we also extract theρπ
scattering lengthaρπ

l=0 = 0.23(12) fm for ourmπ .

The simulation is performed using oneNf = 2 ensemble of gauge configurations with clover-

improved Wilson quarks. The phase shifts are determined from the lowest two energy-levels,

which are obtained by the variational analysis with a numberof quark-antiquark and meson-

meson interpolators. The correlation functions are calculated using the distillation method with

the Laplacian Heaviside (LapH) smearing of quarks.
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1. Introduction

Extracting the width of a hadronic resonanceR from lattice QCD is challenging. The only
proper method used up to now applies to resonancesR that appear in the elastic scattering of
two hadronsH1H2→ R→ H1H2. First the elastic phase shiftδ (s) for H1H2 scattering has to be
determined from the lattice for several values ofs= E2

CM = E2−P2, whereE andP are the energy
and the total momentum of theH1H2 system. Lüscher has shown that the energyE of two hadrons
in a box of sizeL ≃ few fm provides the value of the infinite-volume elastic phase shift δ (s) at
s= E2−P2 [1]. His relation betweenδ andE for P = 0 was generalized toP 6= 0 in [2, 3, 4]. In
practice, one or two lowest energy levelsE are extracted and a few choices ofP are used in order
to extractδ (s) at different values ofs= E2−P2.

The resultingδ (s) can be fit with a Breit-Wigner (or any other desired) form, where both are
related via the scattering amplitudeal for the l -th partial wave

al =
−√sΓR(s)

s−m2
R+ i
√

sΓR(s)
=

e2iδ (s)−1
2i

or
√

sΓR(s) cotδ (s) = m2
R−s , ΓR(s) ∝ g2

RH1H2

p∗2l+1

s
(1.1)

and p∗ is the momentum ofH1 andH2 in their center-of-momentum (CMF) frame. This relation
can be used to extract the massmR and the widthΓR = ΓR(m2

R) of the resonance from lattice data
on δ (s). The width depends significantly on the phase space and therefore onmπ , so it is common
to extract the couplinggRH1H2, which is expected to depend only mildly onmπ .

Among all the meson resonances only theρ meson width has been determined properly using
this method. The first lattice determination was done by PACS-CS in 2007 [5]. Since then, several
studies of theρ have been carried out [6, 7], with the most recent ones [8, 9, 10]. In this talk we
present our recent study of theρ [9], which achieves the smallest statistical errors (on oneensemble
only, however) on the resultingδ (s), mρ andΓρ due to several improvements listed below.

We also extract the S-waveρπ elastic phase shift, which enables us to extract the massma1

and the widthΓa1 of the lowest lying axial resonancea1(1260). The lattice study of this resonance
is especially welcome as the experimental knowledge on it isvery poor: the width has a wide range
Γexp

a1 = 250−600 MeV [11], and none of its branching ratios have been reliably determined1 [11].
To our knowledge, this is the first lattice study aimed at theρπ scattering andΓa1.

2. Lattice simulation

We use 280Nf = 2 configurations with tree-level clover-improved Wilson dynamical and
valence quarks, corresponding tomπa = 0.1673(16) or mπ = 266(3)(3) MeV [12]. The lat-
tice spacinga = 0.1239(13) fm was determined using the Sommer parameterr0 [9] and our
N3

L ×NT = 163× 32 is rather small, allowing us to use the powerful but costlyfull distillation
method [13]. We combine periodic and anti-periodic propagators in time to reduce the finiteNT

effects [9].

1All final states are quoted just as "seen" in [11].
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Figure 1: Contractions for ourρ anda1 correlators with ¯qqandmeson−mesoninterpolators (I = 1).

3. ρ resonance and ππ phase shift

The details of our lattice simulation aimed atππ phase shifts and theρ resonance have been
published in [9]. In this talk, we emphasize the most important steps and results.

Theπ+π−→ ρ0→ π+π− scattering is elastic below the 4π threshold
√

s< 4mπ and we can
apply Lüscher’s method. We determine the lowest two energy-levels of theρ0↔ π+π− coupled
system withJPC = 1−− and|I , I3〉= |1,0〉 for the following cases of total momentumP

P group irrep decay

0 Oh T−1 ρ3(0)→ π(e3)π(−e3)
2π
L e3 D4h A−2 ρ3(e3)→ π(e3)π(0)

2π
L (e1 + e2) D2h B−1 ρ1,2(e1 + e2)→ π(e1 + e2)π(0)

and all permutations in directionP andρ-polarization. We display the symmetry group, the irre-
ducible representation and the decay mode, which applies tothree cases ofP [2, 4, 8, 9].

Other simulations aimed atΓρ used at most one quark-antiquark interpolator and oneππ
interpolator for eachP. We use 15 quark-antiquark interpolatorsO

s=n,m,w
i=1−5 and oneππ interpolator

for eachP, where each pion is projected to a definite momentum:

O
s
i=1,..,5(t) = ∑

x

1√
2

[ūs(x) Fi eiPx us(x) − d̄s(x) Fi eiPx ds(x)] (s= n,m,w) , (3.1)

O
n
6(t) = 1√

2
[π+(p1)π−(p2)−π−(p1)π+(p2)] , π±(pi) = ∑

x
q̄n(x)γ5τ±eipixqn(x) .

Quark-antiquark interpolators have five different color-spin-space structuresFi . The quarks are
smeared using the Laplacian Heaviside (LapH) smearing proposed in [13], i.e.,

qs≡ Θ(σ2
s +∇2) q =

Nv

∑
k=1

Θ(σ2
s +λ (k)) v(k)v(k)† , s= n (narrow), m (middle), w (wide) , (3.2)

where different truncationsNv = 96, 64, 32 correspond to three different widthss= n,m,w [9].
The 16×16 correlation matrixCi j (t f , ti) = 〈0|Oi(t f )O

†
j (ti)|0〉 necessitates the inclusion of the

contractions in Fig. 1. The contractions were computed using the full distillation method, which is
based on the LapH smeared quarks (3.2) [13] and leads to relatively precise results for all types of
contractions in Fig. 1. We apply this method for the first timeto extract a meson width. We also
propose how to apply it for interpolators with different smearing widths in the same variational
basis [9]. All correlators are expressed in terms of the so-called perambulators in Appendix A of
[9]. The resulting correlators are averaged over all sourcetime-slicesti , over all directions ofP and
ρ polarization.

The lowest two energies of the system are determined using the Generalized Eigenvalue Method
(GEVP) [14] and the dependence on the choice of the interpolators in the variational basis is ex-
plored in [9]. The lowest energy level is robust to this choice. We find that the first excited energy

3



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
1
3
7

Decay ofρ and a1 mesons on the lattice using distillation Sasa Prelovsek

0.1 0.15 0.2 0.25 0.3 0.35 0.4
s

0

50

100

150

δ 

0.1 0.15 0.2 0.25 0.3 0.35 0.4
s

-0.2

-0.1

0

0.1

0.2

(p
*3 /s

1/
2 ) 

co
t δ

χ2
/d.o.f. = 7.42/3

χ2
/d.o.f. = 8.42/3

χ2
/d.o.f. = 12.91/3

χ2
/d.o.f. = 11.01/3

Figure 2: The phase shiftδ (in degrees) forππ scattering in P-wave and((ap∗)3/
√

sa2)cotδ as a function
of s, together with a Breit-Wigner fit.

level cannot be reliably obtained without theππ interpolator in the basis, and that more than two
interpolators are required at least in the caseP = 2π

L (1,1,0). The extracted six energy levels for
our preferred interpolator choice [9] are given in Table IIIof [9].

Each of the six energy levels gives the value of the phase shift δ (s) at s= E2−P2 (2) via the
Lüscher formula forP = 0 or its generalization toP 6= 0 [2, 4]. We independently confirmed the
needed relations and compiled them in [9]. One of these levels, E2(P = 0), is above the inelastic
threshold

√
s> 4mπ and we omit it from further analysis.

The resulting phase shifts for five different values ofs are plotted in Fig. 2. The phase
shift has relatively small errors and exhibits a resonatingbehavior, which allows us to extract
mρ and Γρ or rather the couplinggρππ . We use the Breit-Wigner relation (1.1) together with
Γ(s)≡ g2

ρππ p∗3/(6πs), which leads to

p∗3√
s

cotδ (s) =
6π

g2
ρππ

(m2
ρ −s) . (3.3)

This allows a linear fit ins (Fig. 2) to extractmρ andgρππ given in Table 1. The resultingmρa =

0.4972(42) is slightly lower than the naive valuemnaive
ρ a = 0.5107(40), which is extracted from

the ground state withP = 0. We also extract the P-wave scattering lengthaππ
l=1 = 0.082(10)(3) fm3

(defined asal ≡ limδ→0δ (p∗)/p∗2l+1 [15]) from the state with the lowest3 p∗a = 0.1076(36) and
δ = 3.03(6)◦. This qunatity is not directly measured, so we compare it to the typical valueaππ

l=1 ≃
0.038(2) (mphy

π )−3 obtained by combining experiment and ChPT or Roy equations [15].

A comparison of the resultingmρ andgρππ to two recent lattice simulations [8, 10] is com-
piled in [10]. TheNf = 2 simulation with twisted mass quarks [8] and theNf = 2+ 1 simulation
with Wilson quarks were done at four/two values ofmπ and explicitly demonstrate the mild depen-
dence ofgρππ on mπ . All three results ongρππ are relatively close to each other and close to the
gexp

ρππ = 5.97 extracted fromΓexp
ρ . The resonance massmρ of [10] is≃ 11% higher than ours, while

mρ of [8] is ≃ 21% higher than ours, at comparablemπ . Note that all three simulations get the
resonancemρ within 3% from the value ofmnaive

ρ , which implies that the simulations differ already
in mnaive

ρ . Possible causes for differentmnaive
ρ could be discretization effects or scale fixing of all

2We use the discrete dispersion relationcosh(
√

sa) = cosh(Ea)−2∑3
k=1sin2(Pka/2) instead of the continuum one

s= E2−P2 to analyze theρ [9, 5]. We analyze thea1 using the continuum dispersion relation.
3The next state leads toaππ

l=1 consistent with the value obtained from the lowest state.
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mρ [MeV] gρππ aππ
l=1 ma1 [GeV] ga1ρπ [GeV] aρπ

l=0 [fm]

latt 792(7)(8) 5.13(20) 0.082(10)(3) 1.44(4) 1.1(3) 0.23(12) usingmρ

1.43(5) 1.7(4) 0.56(23) usingmnaive
ρ

exp 775.5 5.97 0.108(5) * 1.23(4) < 1.35(30) not meas.

Table 1: Our lattice results for the resonance properties [9], compared to the experimental values. The
results related toa1 depend on the choice of the inputρ mass:mρ or mnaive

ρ . The experimental value ofaππ
l=1

is obtained combining experiment with ChPT or Roy equations.

three simulations, flavor breaking of twisted mass quarks [8] or partial quenching of the strange
quark [8, 9]. Additional causes for the differentmρ values could be the small interpolator basis in
[8, 10] or the small boxL≃ 2 fm in [9]. The exponentially suppressed terms, which are neglected
in Lüscher formulae, may not be completely negligible for our L ≃ 2 fm, which is a systematic
uncertainty of our simulation. We are planing a simulation at largerL to explore possible finite size
effects. We believe, however, that our smallL does not influence ourmnaive

ρ , as the first excited state
π(2π/L)π(−2π/L) at P = 0 hardly affects themnaive

ρ ground state.
Our δ (s) agrees reasonably well with the prediction of the lowest4 order of Unitarized Chiral

Perturbation Theory [16], which has been recalculated for our mπ = 266 MeV.

4. The ρπ phase shift and a1 resonance

We study the S-wave scattering ofρπ, where the resonancea1(1260) appears, for the total
momentumP = 0. The scattering is elastic at least untila1(1260) on our lattice sincēK∗K cannot
be created on ourNf = 2 ensemble. The ground scattering state isρ(0)π(0) in the non-interacting
limit. The scattering particleρ(0) is almost stable on our lattice, since its lowest decay channel
π(2π/L)π(−2π/L) is significantly higher in energy.

We use 9 quark-antiquark interpolatorsO
s=n,m,w
i=1−3 and oneρ(0)π(0) interpolator, all withJPC =

1++, |I , I3〉= |1,0〉 andP = 0:

O
s
1(t) = ∑

x,i

1√
2

ūs(x) Aiγi γ5 eiPx us(x) −{us↔ ds} (s= n,m,w) , (4.1)

O
s
2(t) = ∑

x,i, j

1√
2

ūs(x)
←−
∇ j Aiγi γ5 eiPx −→∇ jus(x) −{us↔ ds} (s= n,m,w) ,

O
s
3(t) = ∑

x,i, j,k

1√
2

εi jl ūs(x) Aiγ j
1
2[eiPx−→∇ l −

←−
∇ l e

iPx]us(x)−{us↔ ds} (s= n,m,w) ,

O
n
4(t) = 1√

2
[π+(0)ρ−(0)−π−(0)ρ+(0)] , π±(0) = ∑

x
q̄nγ5τ±qn , ρ±(0) = ∑

x
q̄nAiγiτ±qn ,

where∇ is the covariant derivative. The contractions in Fig. 1 are calculated using the full distilla-
tion method and averaged over all source time slicesti and alla1 polarizationsA.

The effective mass for the lowest two eigenvalues are shown in Fig. 3 and the resultingE and

p∗ are given in Table 2. The CMF momentump∗ is extracted usingE =
√

p∗2 +m2
π +

√

p∗2 +m2
ρ :

4One cannot make a fair comparison between our lattice resultand the NLO prediction, since it depends on a number
of LECs, and some of them have been fixed usingmρ from another lattice study, which gets a significantly higher mρ .
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Figure 3: The effective mass for lowest two eigenvalues ina1 channel (left). The combinationp∗ cotδ/
√

s
as a function ofs= E2−P2, whereδ is ρπ phase shift in S-wave (right).

it is imaginary for the ground state belowmπ +mρ threshold, and real for the first excited state. We
take two choices for the inputρ mass: our main results are based on the resonance massmρ (green
lines in Fig. 3), whilemnaive

ρ is taken for comparison (blue lines in Fig. 3).
The S-wave phase shiftδ for P = 0 is extracted using the well known Lüscher relation [1]

p∗ cotδ =
2√
π L

Z00

(

1,( p∗L
2π )2

) p∗→0−→ 1

aρπ
l=0

, (4.2)

which applies above and below threshold. The results are compiled in Table 2 for both choices of
ρ mass. The first excited level givesδ ≈ 90◦, so it is sitting close to the top of thea1 resonance and
ma1≈ E2 holds. The ground state with imaginaryp∗ gives imaginaryδ , but the productp∗ cotδ is
real sinceZ00(1,( p∗L

2π )2) is real.
We parametrizeΓa1(s)≡ g2

a1ρπ p∗/sand apply the Breit-Wigner relation (1.1) to get

p∗√
s

cotδ (s) =
1

g2
a1ρπ

(m2
a1−s) , (4.3)

which applies in the vicinity of the resonance above or belowthreshold. Given the values ofp∗ cotδ
at two different values ofs, we apply a linear fit (4.3) ins (shown in Fig. 3) to extractma1 and
ga1ρπ . The results are compiled in Table 1. Ourma1 atmπ = 266 MeV is about 14% higher than the
experimental resonancea1(1260). The first lattice result forga1ρπ is valuable, since this coupling is
not known experimentally. None of thea1 branching ratios have been measured, so we provide only
the upper limit forgexp

a1ρπ resulting from the total widthΓexp
a1 = 250− 600 MeV. Our lattice result

ga1ρπ = 1.1(3) GeV is in agreement with the valuegphen
a1ρπ ≈ 0.9 GeV obtained using Unitarized

Effective Field Theory approach [17] and converted to our convention. We extract alsoaρπ
l=0 from

the ground state, which is sufficiently close to the threshold. The scattering experiment cannot
be carried out sinceρ is a quickly decaying particle, so we compare ouraρπ

l=0(mπ =266MeV) =

0.23(12) fm to aρπ
l=0(m

phy
π )≈ 0.37 fm obtained from Unitarized Effective Field Theory [18].

5. Conclusions

The lattice extraction of the phase shifts for elastic scattering has recently become possible
also for the attractive resonant channels. We simulated thescattering in theρ anda1 channels and
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level fit Ea=
√

sa p∗a δ p∗cos(δ )/
√

s

1 7-10 0.6468(73) i 0.065(13) i 7.1(54)◦ 0.82(44) (usingmρ )
i 0.086(9) i 23(14)◦ 0.34(14) (usingmnaive

ρ )

2 6-9 0.897(13) 0.280(10) 83.7(59)◦ 0.034(33) (usingmρ )
0.272(10) 88.9(59)◦ 0.005(31) (usingmnaive

ρ )

Table 2: The results for thea1↔ πρ coupled channel with interpolatorsOn
1,2,4 and GEVP reference time

t0 = 5. The ground state is belowρπ threshold, sop∗ andδ are imaginary, while thep∗ cotδ is real.

extracted the mass and the width of these two resonances as well as the scattering lengths in the
corresponding meson-meson channels.
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