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1. Introduction

In order to give absolute values for dimensionful quantities (including masses and decay con-
stants) from a lattice simulation, we need to know the lattice spacing a.

Since no unique prescription for scale-setting exists, there is a certain ambiguity arising from
the choice of the dimensionful quantity used to set the scale, which however is at least formally
small since it is of higher order in the lattice spacing. Of more practical importance are the uncer-
tainties that arise from an inaccurate knowledge of the scale caused by statistical and systematic
errors on the relevant quantity.

Here, we present the result of our effort to set the scale via the mass of the Ω baryon [1]. The Ω

mass has a number of advantages over other quantities, in that the Ω is stable in QCD (as opposed
to e.g. the K∗ meson), and that its mass is only very weakly dependent on the light quark mass (as
opposed to e.g. the nucleon). In addition, all calculations necessary to determine the scale from
the Ω mass can be done in the fully relativistic theory (as opposed to e.g. a scale determination
from the ϒ 2S-1S splitting), and no renormalization constant is needed for mΩ (as opposed to e.g.
fK). Possible disadvantages of using the Ω baryon include the less favourable signal-to-noise ratio
for baryons, which may render the extraction of a precise value for amΩ difficult. In an Nf = 2
simulation, an additional potential downside of the Ω baryon is the quenching of the strange quark,
which may introduce additional (presumably small) systematic effects.

The Ω baryon thus provides a way to set the scale that reduces many sources of systematic
error in exchange for an increase in statistical error. To the extent that this increased error can be
beaten by performing more measurements, this is a rather favourable situation.

1.1 The CLS ensembles

Coordinated Lattice Simulations (CLS) is a consortium designed to pool the human and com-
puter resources of several teams in Europe interested in lattice QCD. CLS member teams are lo-
cated at CERN, in Germany (Berlin, DESY/Zeuthen, Mainz, Wuppertal), Italy (Rome, Milan) and
Spain (Madrid, Valencia). All CLS simulations use either M. Lüscher’s implementation of the DD-
HMC algorithm [2] or the MP-HMC algorithm by M. Marinkovic and S. Schaefer [3] to efficiently
simulate N f = 2 Wilson QCD with non-perturbative O(a) improvement on a variety of computer
architectures ranging from PC clusters to the BlueGene/P at NIC/Forschungszentrum Jülich.

The ensembles used in the present analysis are listed in table 1.

2. Methods

2.1 Measurements

We measure the two-point correlators for mesons and baryons using Gaussian-smeared sources
[4] with HYP-smeared links [5] in the covariant Laplacian to suppress excited state contributions.
The parameters of the smearing are fixed at each β so as to correspond to a smearing radius of
approximately 0.4 fm. Multiple point sources per configuration are used in order to improve statis-
tics. For the vector mesons and baryons, we also average over multiple polarizations to further
reduce statistical errors.
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Figure 1: Examples of effective mass plots with plateaux and two-state fits shown for a pseudoscalar and
vector meson and a decuplet baryon channel, corresponding to a trial K, K∗ and Ω on the N4 ensemble,
respectively.

From each measured correlator we extract the effective masses and apply the following meth-
ods to extract estimates for the mass of the ground state: First, a naive plateau fit is performed for
each correlator, starting at a reasonably large Euclidean time; secondly, taking the plateau value as
the starting point, a two-state fit including the leading excited state contribution is performed with a
larger time range. Finally, another two-state fit with the same time range is performed for the bary-
onic channel, in which the gap between the ground and excited state is fixed to the theoretically
expected gap of 2mπ using the measured pion mass. Examples of effective mass plots are shown
in fig. 1.

2.2 Fixing κstrange

In order to establish the physical value of the Ω baryon, we need to fix the strange quark mass
to its physical value. Since we intend to set the scale from the Ω mass, a scale-free renormalization

β T ×L3 κ Ncfg

A3 5.2 64×323 0.13580 261
A4 0.13590 371
A5a 0.13594 201
E5c 5.3 64×323 0.13625 112
F6 96×483 0.13635 192
F7a 0.13638 249
N3 5.5 96×483 0.13640 149
N4 0.13650 142
N5 0.13660 236
O7 128×643 0.13671 78

Table 1: CLS ensembles used in this analysis. Ncfg is the number of configurations used for the calculation
of hadron masses in this study, not the total number generated.
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Figure 2: An example of the interpolation to the physical value of the strange quark mass. The measured
ratios are shown as blue diamonds, and the interpolated value as the red circle.

condition is needed for this purpose, and we therefore will fix κstrange by demanding that a ratio
of masses equals its physical value. Different choices of the ratio used correspond to different
renormalization conditions, which will introduce an ambiguity in the scale through the resulting
ambiguity in κstrange.

The three ratios which we have chosen to fix κstrange are

• R1 = mK/mK∗ , which is the ratio originally used by the CERN group in [6],

• a chirally improved variant R2 = (m2
K − 1

2 m2
π)/m2

K∗ , from which the leading mq dependence
of R1 has been removed, and

• R3 = (m2
K − 1

2 m2
π)/m2

Ω
, which is obtained by replacing the K∗ resonance by the stable Ω

baryon in R2.

Determining all three ratios Ri requires us to measure mπ , mqs
PS, mqs

V and msss
10 for a range of trial

κstrange at each value of β and κsea; we then determine the value of κstrange corresponding to the
physical strange quark mass by interpolating to the physical value of Ri. An example is shown in
fig. 2.

The difference in the value of κstrange that results from the different mass fits is generally less
than the statistical errors, which implies that the systematic errors from excited states are well
under control. Similarly, the difference between a linear and a quadratic interpolation in κstrange or
in κ

−1
strange is much smaller than the statistical errors. All statistical errors were determined using

the UWerr procedure [7] for error propagation including the effects of autocorrelations. In the
following, we have chosen the results from the fit with a fixed gap of 2mπ as our final value.
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Figure 3: The values of κstrange from the three renormalization conditions studied. From left to right, the
β = 5.2, 5.3 and 5.5 ensembles are shown with the values obtained from R1, R2 and R3 plotted as blue
diamonds, pink circles and red squares, respectively.

On the other hand, the ambiguity in κstrange from the choice of the renormalization condition is
significant, but decreases as expected towards the chiral limit, as can be seen in fig. 3. We find that
condition 3, which employs the Ω baryon and a chirally improved estimate of the strange quark
mass, is the most stable and therefore we choose it for our final analysis.

2.3 Fixing the scale

The value r0/a of the Sommer scale in lattice units has been determined on the CLS config-
urations by Knechtli and Leder [9]. On each ensemble, we combine their results for r0/a and our
results for amΩ using the UWerr procedure [7] in order to take into account both the correlations
between observables and the autocorrelations within each ensemble (for an in-depth discussion of
the issues associated with the latter cf. [8]).

Since our respective measurements for the β = 5.5 ensembles were performed on non-overlapping
subsets, we combine the results on these ensembles neglecting the correlations between r0 and mΩ;
since we find that the error of r0mΩ is dominated by the error on amΩ, any resulting systematic
error may be assumed to be small.

The finite combination r0mΩ can now be extrapolated to the physical point in a2 and in
(mπ/mΩ)

2. To estimate systematic uncertainties, we used four different fits:

• a linear fit in (mπ/mΩ)
2, assuming no lattice artifacts,

• a quadratic polynomial in (mπ/mΩ)
2, assuming no lattice artifacts,

• a linear fit in (mπ/mΩ)
2 at each β separately, followed by a linear fit of the chirally extrapo-

lated results in (a/r0)
2, and

• a combined continuum and chiral extrapolation by a fit linear in both (mπ/mΩ)
2 and (a/r0)

2.

The first two fits, which are made under the assumption that lattice artifacts are absent from the
combination r0mΩ, are motivated by the scaling behaviour seen in fig. 4. All fits agree within their
respective errors.
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Figure 4: Left: the joint linear and quadratic chiral extrapolations of r0mΩ ignoring discretization effects;
right: the separate chiral extrapolations of r0mΩ at each value of β . The β = 5.2, 5.3 and 5.5 ensembles are
shown as blue diamonds, green circles and red squares, respectively.

3. Results

A combined continuum and chiral extrapolation of r0mΩ gives a physical value of r0mΩ =

3.99(12)(9), where the errors are statistical and systematic, with the systematic error estimated
from the spread of the results obtained using the different fitting strategies both for the mass ex-
traction and in the extrapolation.

Combining this with the experimental value mΩ = 1672.45(29) MeV [10] gives a value of
r0 = 0.471(14)(10) fm for the Sommer scale, which is compatible with the ETMC result [11] of
r0 = 0.465(6)(15) using the nucleon.

Performing a separate chiral extrapolation of amΩ to the physical pion mass at each value of
β , we find the lattice spacings at the physical point to be

β 5.2 5.3 5.5
a [fm] 0.079(3)(2) 0.063(2)(2) 0.050(2)(2)

We note that the lattice spacings obtained from the Ω baryon mass are significantly finer than
those previously obtained [12] for the same ensembles using the CERN method [6]. This is not
entirely unexpected, since the CERN method uses an unphysical reference point of mπ/mK = 0.85
to make contact with the physical hadron masses, and was intended primarily for determining the
relative scale between different β values rather than an absolute value of the lattice scale.

The new values presented here are, however, compatible with the results obtained in an entirely
separate approach from fK [13], as well as with the results from an independent analysis of the
same data using a different error estimator and performing the chiral extrapolation in (mπ/mN)

2

[14], which gives us confidence in the robustness of the results.
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4. Conclusions

The mass of the Ω baryon provides a way to set the scale in a way that is particularly insensitive
to the sea quark mass, and independent of renormalization constants and effective theories. We
find that the relatively large statistical errors of the Ω baryon mass can be controlled, and that
the systematic errors due to excited states are also well under control; hence the Ω provides an
attractive means to set the scale.

Using mΩ, we have determined the Sommer scale to be r0 = 0.471(14)(10) fm and have set
the lattice spacing on the N f = 2 CLS lattices. The lattice spacings determined in this way are
compatible with those found in an independent analysis employing fK to set the scale. We find
that the lattices are finer than had been previously expected. What influence this will have on the
question of finite-volume effects on studies of hadronic structure [15] remains to be seen.

In the immediate future, we intend to increase the number of measurements on the O7 ensem-
ble, which will reduce the statistical error on the lattice spacing at β = 5.5; in the longer run, we
will also include in our analysis the G8 and N6 ensembles currently being generated, which should
help us to improve our control of the chiral extrapolation.
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