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The extraction of matrix elements from baryon three-point functions is complicated by the fact
that the signal-to-noise drops rapidly as a function of time. Using a previously discussed method
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lattice three-point functions, using electromagnetic form factors for the Delta as an example.
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1. Introduction

The calculation of the electromagnetic form factors for mesons and baryons is crucial to un-
derstanding the structure of hadronic states in QCD. However, for the ∆(1232) and other extremely
short-lived resonances, they are notoriously difficult to both measure experimentally as well as cal-
culate theoretically due to the complications that arise from the strong interactions. In the case of
the ∆(1232) resonance, the form factors themselves are not currently experimentally accessible, al-
though two of the form factors in the static limit are known (the charge) or measured to some degree
(the magnetic dipole moment). For the nucleon, experimental results do exist for the form factors
as a function of the momentum transfer. This makes a calculation of the nucleon form factors both
a check of methodology as well as of QCD, and allows us to be confident that lattice results for the
∆ form factors are reasonable. Such an analysis will occur in a forthcoming publication [1].

The electromagnetic form factors of the ∆ are encoded in the matrix element〈
∆(p′)|Jµ |∆(p)

〉
= ūα(p′)Γαβ µuβ (p) (1.1)

where uα is a Rarita-Schwinger vector-spinor describing the external ∆, and Jµ = ∑q q̄γµq is the
electromagnetic vector current. The Lorentz structure of Γ is given, for example, in [2], and has
four form factors F∗1,2,3,4(Q

2) that are functions of Q2 = −(p′− p)2 alone. These form factors
give rise, in the limit Q2→ 0, to the electric charge, magnetic dipole moment, electric quadrupole
moment, and magnetic octupole moment of the ∆.

Of these moments, the charge is of course known, and from the PDG [3], we have

µ∆++ = (5.6±1.9)µN , (1.2)

µ∆+ = (2.7±3.5)µN , (1.3)

where we have added all of the errors (including theoretical) in quadrature just to get an idea for
how well these are determined experimentally. Thus, it is essential even for this simple quantity
to have a well-determined lattice result. Some unquenched results were obtained using the form
factor approach in [4] and using a background field technique [5], but there are several difficulties
that arise in these different methods. For this work, we will focus on the difficulties with the form
factor approach.

2. Lattice three-point functions

These are determined by calculating the 3-point correlator:

C3pt(ti, t, t f ,pi,p f ) = FT
[〈

0|χ(t f ,x f )Jµ(t,0)χ(ti,xi)|0
〉]

, (2.1)

where FT is the Fourier Transform of the correlator, and χ is some appropriate interpolating oper-
ator for the ∆. In the large time limit t f � t � ti, for example, if we are interested in determining
GE0, we can set µ = 4 and we get, using the +3/2 spin projection for both of the external ∆’s,

C3pt
ss (ti, t, t f ,pi,p f )→

C2pt
sp (t,pi)

C2pt
ss (t f − ti,p f )C

2pt
sp (t,p f )

〈
∆(p f ,+3/2)|J4(0)|∆(pi,+3/2)

〉
+ · · · , (2.2)
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Figure 1: On the left is the matrix element GE for the ∆++ evaluated at q2 = 0. While there is significant
excited state contamination, there is a noticeable plateau that gives (up to renormalization) the charge of the
∆. On the right is the same matrix element for q2 = 11(2π/asL)2 ≈ 4 GeV2, where there is no trustworthy
signal.

with 〈
∆(p f ,+3/2)|J4(0)|∆(pi,+3/2)

〉
= GE0(q2) ,

and C2pt
ss and C2pt

sp are the shell-shell and shell-point two-point functions. The dots denote contri-
butions from excited states that are generally ignored. Note that additional complications arise in
separating the ∆ state and the N−π state when the pion mass is below 300 MeV. Currently we are
not near this regime, so it is not an issue for the current analysis.

The problem is that the contamination from excited states can be seen to be large, even for the
simplest cases. Take here the ∆++ E0 form factor, GE0(q2), which is a linear combination of the F∗i
form factors. In the limit q2→ 0, GE0(0) = +2, the electric charge of the ∆++ in units of |e|. We
have shown in Ref. [6] preliminary results from analyzing these data via the standard technique,
even though there was significant contamination from excited states.

We show on the left of Fig. 1 the extraction of GE0 for two values of momenta using the Hadron
Spectrum collaboration lattices of 2+1-flavor anisotropic Clover lattices [7] (here with a volume of
163×128 and a pion mass of roughly 490 MeV, and a−1

t ≈ 5.5GeV,as/at ≈ 3.5). The source and
sink are located at t = 0,28, and we can see a plateau in the center where we could reliably extract
the form factor, but there is significant contamination from excited states, seen from the deviation
from the plateau.

3. Generalized Eigenvalue Problem

As discussed in Ref. [6], we can use a modification of the Generalized Eigenvalue Problem
(GEVP), noting that there are many interpolating operators that could be used to calculate a two-
point function, and one could form a matrix of correlators

C2pt
i j (t) =

〈
0|Oi(t)Ō j(0)|0

〉
. (3.1)
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From this, by solving the GEVP

C2pt(t)vn = λn(t, t0)C2pt(t0)vn , (3.2)

one can show (see [8] and references therein) that the eigenvalues behave like

λi(t, t0)∼ e−mi(t−t0)+ · · · . (3.3)

The reference time t0 is empirically chosen so that at that time, all n states (for an n× n system)
would contribute to the correlator; no more, no less. For our purposes, we find that the choice of t0
has little effect on our results, primarily because we are using a very small basis of operators.

4. Generalized Pencil-of-Function Method

While the GEVP is very useful for obtaining reliable extractions of excited states, one can
use a different approach that can kill off the excited state contribution to the ground state. This is
known as the Generalized Pencil-of-Function (GPoF) method [9, 10]. In a quantum mechanical
system, the important point is that if O∆(t) is an interpolating operator for the ∆, then so is

Oτ
∆(t)≡ eHτO∆(t)e−Hτ = O∆(t + τ) , (4.1)

and this new operator is linearly independent from the original operator.
So if we use O∆(t),Oτ

∆
(t) as our two operators, we can construct a correlator matrix using only

a single correlator. This matrix is

C(t) =

(
C(t) C(t + τ)

C(t + τ) C(t +2τ)

)
. (4.2)

We can replicate this and use a set of operators Oτ,n
∆
(t) = O∆(t + nτ), and make this correlator as

large as we wish. It turns out that using multiple shifts does not give us any additional information,
so we will ultimately use just a single shift and a τ = 4. This would be something that is determined
for each correlator one is interested in. Once this matrix is created then we follow through the same
procedure as before with the GEVP. More details can be found in [6, 11]

When applying this to three-point correlator data, we first solve the GEVP for the shifted
two-point correlator, by first performing a singular-value decomposition on C2pt(t0), so

C2pt(t0) =UΣV † ,

where Σ has a dimension ≤ C2pt(t0), where we remove singular values that are smaller than the
largest singular value by some cutoff, say 10−3. Then we solve

C̄2pt(t)v′n = λn(t, t0)v′n , (4.3)

with
C̄2pt(t) = Σ

−1/2U†C2pt(t)V Σ
−1/2 , v′n = Σ

1/2V †vn , (4.4)

and then we use these solutions to diagonalize the three-point correlator, so that

Ḡ3pt
nn′ = (vT ′

Σ
−1/2U†)niG

3pt
i j (V Σ

−1/2v′) jn′ . (4.5)

We then use this version of the three-point function as well as the “barred” two-point functions
[Eq. (4.4)] in Eq. (2.2) to extract the form factor GE0.
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Figure 2: The same as Fig. 1, but for the three-point functions analyzed by the GPoF method.

5. Preliminary Results

We show initial results for this approach for the two momenta chosen above in Fig. 2. Here we
use three source-sink separations of 20,24, and 28. We see that the GPoF approach has improved the
plateaux noticeably. There is still excited-state contamination for the zero-momentum contribution,
but the resulting plateau has smaller statistical errors. As for the higher momentum plot p2 ≈ 4
GeV2, the overall result is consistent with zero, and the GPoF approach significantly improves the
signal.

We show in Fig. 3 results from extracting the form factor GE0 (divided by 2 to compare with
that of the proton as seen in Ref. [6]) as a function of p2, the momentum transfer. While a more
detailed analysis of the systematics needs to be performed (along the lines of that in Ref. [11]), these
results show that with a small amount of additional computation, one can extract reliable plateaux
from lattice three-point functions with the excited-state contamination significantly reduced.
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Figure 3: Preliminary extraction of the GE0 form factor using the GPoF method.
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