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1. Introduction

An important part of our experimental understanding of hadron substructure is that hadrons in
a medium are different to those in free space. The “EMC effect”, the modification of the proton
F2(x,Q2) structure function inside a nucleus (as first observed in 1983 by the European Muon
Collaboration [1]) is one of the most famous examples of medium sensitivity. This effect has
been studied in many hadronic models with varying degrees of success (see Ref. [2] for a recent
review) but an understanding from first principles is lacking. While the EMC effect and other such
modifications of hadron properties are not a posteriori unexpected from the viewpoint of Quantum
Chromodynamics (QCD), the complexity of QCD calculations involving nuclei has prevented the
direct investigation of such effects. In QCD, we expect that medium modification is a ubiquitous
feature of complex hadronic systems and, in these proceedings, we report on the study of a close
analogue of the EMC effect, namely the modification of pion structure in the presence of a Bose
condensed medium of pions.

Since hadronic structure is a low energy consequence of QCD, the only tool with which to
perform ab initio studies is lattice QCD (LQCD). Lattice QCD is formulated in Euclidean space,
so physics defined on the light-cone, such as that embodied in the parton distributions and structure
functions of deep inelastic scattering, is very difficult to address directly (an alternate approach is
suggested in Ref. [3]). However, through the Wilsonian operator product expansion (OPE), the
Mellin moments, 〈xn〉h(µ) =

∫ 1
−1 dxxnqh(x; µ), of the unpolarised quark distribution, qh(x; µ), in

a hadron h correspond to the forward matrix elements of local operators (µ is the renormalisation
scale). Here, we focus on the leading twist, unpolarised operators and have

〈h; p|O{µ0...µn}
q |h; p〉= 〈xn〉h pµ0 . . . pµn , (1.1)

O
{µ0...µn}
q (x) = q(x)γ{µ0Dµ1 . . .Dµn}q(x) . (1.2)

where {. . .} indicates symmetrisation of enclosed indices and subtraction of traces. The depen-
dence of the various quantities on the renormalisation scale is suppressed for concision and q
represents a particular flavour of quark field. The hadron h can be a proton or pion or it can be
a more complex object such as a nucleus or a collection of mesons. In these proceedings, matrix
elements of the n = 1 operator are investigated in systems of up to twelve pions.

2. Lattice Methods

These matrix elements can be computed using the lattice approach by measuring two- and
three- point correlation functions in the appropriate hadronic states. For clarity, we will consider
the case of the up quark distribution of the π+ (ud) in a medium of π+’s. Two point functions from
a source location x0 = (x0, t0),

Cm(t,p) =
〈

0
∣∣∣[ m

∏
i=1

∑
x

eipi·xπ
+(x, t)

][
π
−(x0)

]m
∣∣∣0〉

, (2.1)

where π+ = uγ5d, allow the energies of systems of m-pions to be determined from the dependence
on Euclidean time. The total momentum of the m-pion state is p = ∑

m
i=1 pi as selected by the
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summations over spatial sink locations (the individual pi are not quantum numbers). In the current
context, we shall only consider p = 0.

For t0 = 0, the spectral decomposition of the correlator has the form [4]

Cm(t,0)→
m

∑
`=0

(
m
`

)
Z(`)

m e−Em−`te−E`(T−t) + . . . , (2.2)

where T is the temporal extent of the lattice and the ellipsis denotes excited states that are expo-
nentially suppressed as t increases. The factors Z(`)

m ∼ |〈`|(π+)m|m− `〉|2 represent the overlap of
the m-pion interpolating operator onto (m− `) π+’s going forward in time and ` π−’s going back-
ward in time (in the ground state, the momentum of the forward and backward going collections
of pions separately vanish). Note that Z(m−`)

m = Z(`)
m . In the limit of a large temporal extent of the

lattice (T → ∞), only the term with ` = 0 contributes, but at finite T (corresponding to non-zero
temperature), thermal states in which some number of pions travels around the temporal boundary
are important as we shall see below.

Corresponding three point correlation functions allow the matrix elements in Eq. (1.1) to be
determined for the operator O

(n)
q ≡O

{µ0...µn}
q ,

C(n)
m (τ, t,p) =

〈
0
∣∣∣[ m

∏
i=1

∑
x

eipi·xπ
+(x, t)

]
∑
y

O
{µ0...µn}
u (y,τ)

[
π
−(x0)

]m
∣∣∣0〉

. (2.3)

Here, the operator is inserted at time-slice τ injecting zero momentum. The spectral decomposition
of the three point correlator for p = 0 is

C(n)
m (τ, t,0) =

m

∑
`=0

(
m
`

)
Z(`)

m 〈O(n)
m−`〉e

−Em−`te−E`(T−t) + . . . , (2.4)

and 〈O(n)
m 〉 = 〈m|O(n)

u |m〉 is the matrix element of the operator in the m-pion state. Excited states
are suppressed in this expression and we assume

〈
O

(n)
0

〉
= 0 for the cases we consider. For m-

pion systems, contributions involving colour singlet sub-states propagating around the temporal
boundary result in there being contributions from matrix elements of states with ` < m pions. Near
the middle of the temporal extent, t ∼ T/2, these contributions may be important.

In the large T limit, only the ` = 0 state contributes in Eqs. (2.2) and (2.4) and it is clear that
the ratio

R(n)
m =

C(n)
m (τ, t,0)
Cm(t,0)

−→ 〈m|O{µ0...µn}
u (µ)|m〉

= pµ0 . . . pµn〈xn〉mπ(µ) , (2.5)

where pµ = (0,Em), This ratio will be independent of the sink and operator insertion times, t and
τ , provided t0 � τ, |t− τ| � T and determines the in-medium Mellin moment. It follows that the
double ratio R

(n)
m = R(n)

m /R(n)
1 determines the ratio of moments in medium to those in free space

that we are interested in up to a simple kinematic factor. This double ratio is independent of the
renormalisation scale, µ , obviating the need for calculating the coefficients necessary to match
lattice operators to operators in the MS scheme. If t − t0 is not much less than T , the above ratios

3



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
1
4
9

Medium Effects in Parton Distributions William Detmold

Label a [fm] L3×T mπ [MeV] mπL mπT Measurements
F 0.09 283×96 320 4.1 14.0 432

C1 0.12 203×64 290 3.7 11.7 1450
C2 0.12 203×64 350 4.4 14.2 837
C3 0.12 203×64 490 6.2 19.9 1000
L 0.12 203×64 350 6.3 14.2 250

Table 1: Details of measurements and ensembles used in this calculation. For each data set, the remaining
columns correspond to the lattice spacing, lattice dimensions, valence pion mass and number of configura-
tions × number of sources on each configuration.

will be contaminated by thermal contributions. However, Eqs. (2.4) and (2.2) can still be used to
extract the Mellin moments 〈xn〉mπ(µ).

In terms of a lattice calculation, the two and three point functions we require are complicated
by the many Wick contractions that arise in multi-pion systems. We proceed by defining partly
contracted objects

Π(t;p) = ∑
x

Su(x, t;x0, t0)S†
d(x, t;x0, t0) ,

Π̂
(n)(t,τ;p) = ∑

x,y
eip·xSu(y,τ;x0, t0)γ5γ

{µ0Dµ1 . . .Dµn}γ5Su(x, t;y,τ)S†
d(x, t;x0, t0) ,

where Sq is the quark propagator of flavour q and we have used γ5-hermiticity, S(x,y) = γ5S†(y,x)γ5,
to reverse the arguments of propagators from sink to source and contraction on spin and colour
indices is assumed. These objects are can be viewed as time-dependent 12× 12 matrices in spin
and colour space. Using the techniques developed in Refs. [4, 5, 6, 7], the required contractions
can now be built in terms of spin-colour traces of products of these matrices that can be efficiently
computed. As the multi-hadron correlators decay very rapidly with Euclidean time, high precision
arithmetic is needed in these calculations for which we use the QD library [8].

Numerical details: Our calculations are performed using gauge configurations generated by
the MILC collaboration [9] using the rooted-staggered formulation of quarks and the asqtad gauge
action. One level of HYP smearing [10] is applied to these configurations to reduce short distance
fluctuations. The ensembles used in this study are shown in Table 1, where we also report the
number of configurations used and the number of source locations used on each configuration (the
L ensemble has been used solely for checks of volume dependence). Domain-wall [11, 12] valence
quark propagators have been calculated from APE smeared [13] sources at various locations by
the NPLQCD and LHP collaborations [14, 15]. These are then APE smeared on the sink time-
slice with fixed momentum and used as the source for the sequential propagators connecting to the
operator generated using the same action. The source–sink separation in the three point correlation
functions is chosen at tsep/a ≡ (t − t0)/a ∈ {16, 20, 24, 28, 32} on the C1, C2 and C3 ensembles
and at tsep/a∈ {24, 32, 48} on the F ensemble. The operator insertion time is varied over the entire
lattice.

3. Thermal contamination

A major issue in the present calculations is the contribution of thermal states to two- and three-
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Figure 1: The logarithm of the correlators for the m = 1, . . . ,12 pion systems on the C1 ensemble. Also
shown are the fits to these correlators and their uncertainties.

point correlations functions. Given that the temporal extent of the lattice is fixed, one needs to go
to early Euclidean times in order to ensure that the true ground state of the system is dominating
the signal. However at early time, one must be concerned about (forward-going) excitations that
are damped at later Euclidean times and a careful analysis is required. By using the full form of
the expected correlator, Eq. (2.2), and performing fits to all 12 correlators, the energies Em and the
multiple overlap factors Z(`)

m can be determined. Since we successively fit C1, C2, . . . , C12, only a
single energy is determined by each fit and to account for correlations we perform these fits using
a bootstrap procedure. The results of our fits to the correlators on the C1 ensemble are shown in
Fig. 1.

The extracted bootstrap sets of parameters can then be used to reconstruct the correlator in the
limit of infinite temporal extent by removing all thermal contributions. In Fig. 2, the ratios of these
zero temperature extrapolation of the correlators to the original correlators are shown as a function
of Euclidean time for the m = 1, . . . ,12 pion systems (again for the C1 ensemble). It is clear from
this figure that for source–sink separations beyond t ∼ 20, it will prove difficult to extract the m-
pion matrix element from the corresponding three-point function as the desired contribution will be
suppressed relative to the thermal contributions. This is also the case for the C3 ensemble (where
mπT ∼ 20) for larger numbers of pions as shown in the right panel of the figure.

4. Quark momentum fraction

In order to perform extractions of the matrix elements, we use the bootstrap list of the m-pion
energies and overlap factors obtained from the two-point functions and input them into the expected
spectral decomposition of the three-point function, Eq. (2.4). Using multiple different source-sink
separations, we then fit the parameters 〈O(n)

m 〉 to the three point data under the bootstrap procedure.
In Fig. 3, we show preliminary results for the the dependence of 〈x〉mπ on the density of the pion
gas for the C3 ensemble. Mild dependence on the density of pions is observed but further work
remains to better quantify systematic effects and to study the dependence on quark masses and the
continuum and infinite volume limits.
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Figure 2: The ratio of the zero temperature reconstruction of the correlators for m = 1, . . . ,12 pion systems
to the fitted (finite T) correlators. Data are from the C1 (left) and C3 (right) ensembles. When this ratio
deviates from unity, thermal effects are making significant contributions to the correlator.
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Figure 3: Extracted ratio of pion momentum fraction in an m-pion system to that in a single pion, 〈x〉mπ/〈x〉π

for the C3 ensemble as a function of the number of pions in the system.

5. Discussion

It is clear from our preliminary studies presented here that the investigation of multi-hadron
matrix elements is a challenging task in lattice QCD. While the current investigations focus on
multi-pion systems, similar techniques in principle allow access to matrix elements in nuclei. With
the recent observation of bound light nuclei in quenched QCD [16, 17] and QCD at unphysical
quark masses [18, 19, 20, 21], further studies are warranted. However, the large statistics needed in
lattice studies of few-body nuclei make this a daunting task for the future. On a more positive note,
the thermal contamination that has hampered then current investigations is particularly vexing as
Em−` + E` < Em for these systems and in light nuclei, where the binding per nuclei increases, this
may not be such a significant issue.
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