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We explore three-nucleon forces (3NF) from lattice QCD simulations. Utilizing the Nambu-
Bethe-Salpeter (NBS) wave function, two-nucleon forces (2NF) and 3NF are determined on the
same footing. Quantum numbers of the three-nucleon (3N) system are chosen to be (I,JP) =

(1/2,1/2+) (the triton channel). The enormous computational cost is reduced by employing
the simplest geometrical configuration, where 3N are aligned linearly with an equal spacing. We
perform lattice QCD simulations using N f = 2 dynamical clover fermion configurations generated
by CP-PACS Collaboration, at the lattice spacing of a= 0.156 fm on a 163×32 lattice with a large
quark mass corresponding to mπ = 1.13 GeV. Repulsive 3NF is found at short distance.
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1. Introduction

Determination of the properties of three-nucleon forces (3NF) is one of the most important
issue in nuclear physics and astrophysics these days. There are various phenomena where 3NF are
considered to play an important role, e.g., the binding energies of light nuclei [1], the properties of
neutron-rich nuclei and the supernova nucleosynthesis [2], the nuclear equation of state (EoS) at
high density relevant to the physics of neutron stars [3, 4] and the cross sections in nucleus-nucleus
elastic scatterings [5]. Deuteron-proton elastic scattering experiments at intermediate energies have
also shown a clear indication of 3NF [6].

Despite of its phenomenological importance, microscopic understanding of 3NF is still lim-
ited. Pioneered by Fujita and Miyazawa [7], the long range part of 3NF has been commonly mod-
eled by the two-pion exchange (2πE), particularly with the ∆-resonance excitation. An additional
repulsive component of 3NF at short distance is often introduced in a purely phenomenological
way [8]. An approach based on the chiral effective field theory is also developing [9].

However, since 3NF is originated by the fact that a nucleon is not a fundamental particle, it
is most desirable to determine 3NF directly from the fundamental degrees of freedom (DoF), i.e.,
quarks and gluons, on the basis of quantum chromodynamics (QCD). In this proceeding, we carry
out first-principle calculations of 3NF using lattice QCD simulations. Note that while there are
lattice QCD works for three- and four- baryon systems [10, 11], they focus on the energies of the
multi-baryon systems, and extracting 3NF is currently beyond their scope.

As for the calculation of two-nucleon forces (2NF) from lattice QCD, an approach based on
the NBS wave function has been proposed [12, 13], so that the potential is faithful to the phase
shift by construction. Resultant (parity-even) 2NF are found to have desirable features such as
attractive wells at long and medium distances and central repulsive cores at short distance. The
method has been successfully extended to the hyperon-nucleon (YN) and hyperon-hyperon (YY)
interactions [14, 15, 16, 17, 18] and meson-baryon systems [19]. In this report, we extend the
method to the three-nucleon (3N) system, and perform the lattice QCD simulations for 3NF in the
triton channel, (I,JP) = (1/2,1/2+) [20, 21, 22, 23]. For details of this study, refer to Ref. [22].

2. Formalism

The detailed formulation for the determination of 2NF is given in Ref. [13], and we here focus
on the extension to the 3N system. We consider the NBS wave function of the 3N, ψ3N(~r,~ρ),
extracted from the six-point correlator as

G3N(~r,~ρ , t − t0) ≡ 1
L3 ∑

~R

〈0|(N(~x1)N(~x2)N(~x3))(t) (N′N′N ′)(t0)|0〉 (2.1)

−−→
t�t0

A3Nψ3N(~r,~ρ)e−E3N(t−t0), (2.2)

ψ3N(~r,~ρ) ≡ 〈0|N(~x1)N(~x2)N(~x3)|E3N〉, A3N ≡ 〈E3N |(N′N′N′)|0〉, (2.3)

where E3N and |E3N〉 denote the energy and the state vector of the 3N ground state, respectively, N
(N′) the nucleon operator in the sink (source), and ~R ≡ (~x1+~x2+~x3)/3,~r ≡~x1−~x2,~ρ ≡~x3−(~x1+

~x2)/2 the Jacobi coordinates.
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With the derivative expansion of the potentials [24], the NBS wave function can be converted
to the potentials through the following Schrödinger equation,[

− 1
2µr

∇2
r −

1
2µρ

∇2
ρ +∑

i< j
V2N(~ri j)+V3NF(~r,~ρ)

]
ψ3N(~r,~ρ) = E3Nψ3N(~r,~ρ), (2.4)

where V2N(~ri j) with ~ri j ≡~xi −~x j denotes the 2NF between (i, j)-pair, V3NF(~r,~ρ) the 3NF, µr =

mN/2, µρ = 2mN/3 the reduced masses. If we calculate ψ3N(~r,~ρ) for all~r and~ρ , and if all V2N(~ri j)

are obtained by (separate) lattice calculations for genuine 2N systems, we can extract V3NF(~r,~ρ)
through Eq. (2.4).

In practice, however, the computational cost is enormous, because of enlarged color/spinor
DoF by the 3N (i.e., 9 valence quarks) and factorial number of the Wick contractions. In order
to reduce the cost, we first take advantage of symmetries (such as isospin symmetry) to reduce
the number of the Wick contractions. Second, we utilize that there is a freedom for the choice
of a nucleon interpolating operator. In particular, a potential is independent of the choice of a
nucleon operator at the source, N′, and we employ the non-relativistic limit operator as N′ = Nnr ≡
εabc(qT

a Cγ5Pnrqb)Pnrqc with Pnr = (1+ γ4)/2. Compared to the standard nucleon operator, Nstd ≡
εabc(qT

a Cγ5qb)qc, the spinor DoF of each (source) nucleon is reduced by half, and the computational
cost of the 3N system is reduced by a factor of 23 = 8. On the other hand, a potential is dependent
on the choice of a nucleon operator at the sink, N, since a NBS wave function is defined through a
sink operator. Note, however, that physical observables calculated from these different potentials,
such as phase shifts and binding energies, are unique by construction [13]. In this sense, choosing N
corresponds to choosing the “scheme” to define the potential [13, 25]. In Ref. [24], it is found that
the non-locality of 2NF from the choice of N = Nstd is small, and N = Nstd can be considered to be
a “good scheme”. We therefore employ the same sink operator N = Nstd in the 3N study as well, so
that 2NF and 3NF are determined on the same footing. Finally, we restrict the geometry of the 3N.
More specifically, we consider the “linear setup”with ~ρ =~0, with which 3N are aligned linearly
with equal spacings of r2 ≡ |~r|/2. In this setup, the third nucleon is attached to (1,2)-nucleon
pair with only S-wave. Considering the total 3N quantum numbers of (I,JP) = (1/2,1/2+), the
triton channel, the wave function can be completely spanned by only three bases, which can be
labeled by the quantum numbers of (1,2)-pair as 1S0, 3S1, 3D1. Therefore, the Schrödinger equation
leads to the 3× 3 coupled channel equations with the bases of ψ1S0

, ψ3S1
, ψ3D1

. The reduction
of the dimension of bases is expected to improve the S/N as well. It is worth mentioning that
considering the linear setup is not an approximation: Among various geometric components of
the wave function of the ground state in the triton channel, we calculate the (exact) linear setup
component as a convenient choice to study 3NF. While we can access only a part of 3NF from it,
we plan to extend the calculation to more general geometries step by step, toward the complete
determination of the full 3NF.

We consider the identification of genuine 3NF. It is a nontrivial work: Although both of parity-
even and parity-odd 2NF are required to subtract 2NF part in Eq. (2.4), parity-odd 2NF have not
been obtained yet in lattice QCD. (See, however, our recent progress on this issue [26].) In order
to resolve this issue, we consider the following channel,

ψS ≡
1√
6

[
− p↑n↑n↓+ p↑n↓n↑−n↑n↓p↑+n↓n↑p↑+n↑p↑n↓−n↓p↑n↑

]
, (2.5)
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which is anti-symmetric in spin/isospin spaces for any 2N-pair. Combined with the Pauli-principle,
it is automatically guaranteed that any 2N-pair couples with even parity only. Therefore, we can
extract 3NF unambiguously using only parity-even 2NF. Note that no assumption on the choice
of 3D-configuration of ~r, ~ρ is imposed in this argument, and we thus can take advantage of this
feature for future 3NF calculations with various setup of 3D-geometries.

3. Lattice QCD setup and Numerical results

We employ N f = 2 dynamical configurations with mean field improved clover fermion and
RG-improved gauge action generated by CP-PACS Collaboration [27]. We use 598 configurations
at β = 1.95 and the lattice spacing of a−1 = 1.269(14) GeV, and the lattice size of V = L3 ×T =

163 ×32 corresponds to (2.5 fm)3 box in physical spacial size. For u, d quark masses, we take the
hopping parameter at the unitary point as κud = 0.13750, which corresponds to mπ = 1.13 GeV,
mN = 2.15 GeV and m∆ = 2.31 GeV. We use the wall quark source with Coulomb gauge fixing.
In order to enhance the statistics, we perform the measurement on 32 wall sources using different
time slices, and the forward and backward propagations are averaged. The results from both of
total angular momentum Jz =±1/2 are averaged as well. Due to the enormous computational cost,
we can perform the simulations only at a few sink time slices. Looking for the range of sink time
where the ground state saturation is achieved, we carry out preparatory simulations for effective
2NF in the 3N system in the triton channel at 2 ≤ (t − t0)/a ≤ 11, and find that the results are
consistent with each other as long as (t− t0)/a ≥ 7 [22]. Being on the safer side, we perform linear
setup calculations of 3NF at (t − t0)/a = 8 and 9. We perform the simulation at eleven physical
points of the distance r2.

In Fig. 1, we plot the radial part of each wave function of ψS = (−ψ1S0
+ψ3S1

)/
√

2, ψM ≡
(ψ1S0

+ψ3S1
)/
√

2 and ψ3D1
obtained at (t − t0)/a = 8. Here, we normalize the wave functions by

the central value of ψS(r2 = 0). What is noteworthy is that the wave functions are obtained with
good precision, which is quite nontrivial for the 3N system. We observe that ψS overwhelms other
wave functions. This indicates that higher partial wave components are strongly suppressed, and
thus the effect of the next leading order in the derivative expansion, spin-orbit forces, is suppressed
in this lattice setup.

We determine 3NF by subtracting 2NF from total potentials in the 3N system. Since we have
only one channel (Eq. (2.5)) which is free from parity-odd 2NF, we can determine one type of 3NF.
In this report, 3NF are effectively represented in a scalar-isoscalar functional form, which is often
employed for the short-range 3NF in phenomenology [8].

In Fig. 2, we plot the results for the effective scalar-isoscalar 3NF at (t − t0)/a = 8. Here, we
include r2-independent shift by energies, δE ' 5 MeV, which is determined by long-range behavior
of potentials (2NF and effective 2NF in the 3N system) [22]. While δE suffers from <∼ 10 MeV
systematic error, it does not affect the following discussions much, since δE merely serves as an
overall offset. In order to check the dependence on the sink time slice, we compare 3NF from
(t − t0)/a = 8 and 9 in Fig. 3. While the results with (t − t0)/a = 9 suffer from quite large errors,
they are consistent with each other within statistical fluctuations.

Fig. 2 shows that 3NF are small at the long distance region of r2. This is in accordance with the
suppression of 2πE-3NF by the heavy pion. At the short distance region, however, an indication of
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Figure 1: 3N wave functions at (t − t0)/a = 8.
Circle (red), triangle (blue), square (green) points
denote ψS, ψM , ψ3D1

, respectively.
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Figure 2: The effective scalar-isoscalar 3NF in
the triton channel with the linear setup, obtained at
(t − t0)/a = 8.

repulsive 3NF is observed. Note that a repulsive short-range 3NF is phenomenologically required to
explain the properties of high density matter. Since multi-meson exchanges are strongly suppressed
by the large quark mass, the origin of this short-range 3NF may be attributed to the quark and
gluon dynamics directly. In fact, we recall that the short-range repulsive (or attractive) cores in the
generalized two-baryon potentials are systematically calculated in lattice QCD in the flavor SU(3)
limit, and the results are found to be well explained from the viewpoint of the Pauli exclusion
principle in the quark level [15]. In this context, it is intuitive to expect that the 3N system is subject
to extra Pauli repulsion effect, which could be an origin of the observed short-range repulsive 3NF.
Further investigation along this line is certainly an interesting subject in future.

It is in order to discuss the systematic errors in lattice simulations. First, one may worry about
the discretization error, since the nontrivial results are obtained at short distance. In particular, the
kinetic term (Laplacian part in the Schrödinger equation) could suffer from a substantial effect,
since they are calculated by the finite difference as ∇2

std f (x)≡ 1
a2 ∑i [ f (x+ai)+ f (x−ai)−2 f (x)].

In order to estimate this artifact, we also analyze using the improved Laplacian operator for both of
2N and 3N, ∇2

imp f (x)≡ 1
12a2 ∑i [−( f (x+2ai)+ f (x−2ai))+16( f (x+ai)+ f (x−ai))−30 f (x))].

In Fig. 4, we plot the comparison between the results of 3NF from ∇2
std and ∇2

imp at (t − t0)/a = 8.
It is found that they are consistent with each other, and we conclude that the discretization artifact
of 3NF in Laplacian operator is small. We, however, remark that this study probes only a part of
discretization errors. Actually, the analysis with operator product expansion [28, 29] shows that
2NF of V2N(r) tend to diverge as r → 0, so significant discretization artifact is expected around
r = 0. Full account of the discretization artifact can be examined by an explicit lattice simulation
with a finer lattice, which is currently underway.

Second, the finite volume artifact is discussed. In this simulation, three nucleons are accom-
modated in (2.5 fm)3 spacial lattice box. We note that this is quite a large box for the heavy pion,
namely, mπL is as large as 14. Furthermore, the finite volume artifact is expected to appear mainly
in large r2 region, and we avoid it as much as possible by focusing on the short-range part of 3NF.
For the relatively large r2 (r2 >∼ 0.5 fm) region, points are carefully chosen so that they are located
in off-axis directions. Therefore, we expect that the finite volume artifact is not substantial in our
study. Of course, a quantitative examination requires calculations with larger volumes, which we
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Figure 3: 3NF obtained at (t − t0)/a = 8 and 9,
plotted with circle (red) points and triangle (blue)
points, respectively.
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defer to future studies.
Third, we consider the contamination from excited states. As has been discussed, we do

not observe sink time dependence for 3NF in linear setup between (t − t0)/a = 8 and 9, nor for
effective 2NF in the 3N system as long as (t − t0)/a ≥ 7. It is, however, desirable to investigate
3NF in linear setup with more sink time slices. In particular, it is recently proposed [30] to utilize
the time-dependent Schrödinger equation to further eliminate the excited state contamination. In
order to apply this method to 3NF, linear setup calculations at additional sink time slices are in
progress.

Finally, quark mass dependence of 3NF is certainly an important issue, since the lattice simula-
tions are carried out only at single large quark mass. In the case of 2NF, short-range cores have the
enhanced strength and broaden range by decreasing the quark mass [13]. We, therefore, would ex-
pect a significant quark mass dependence exist in short-range 3NF as well. In addition, long-range
2πE-3NF will emerge at lighter quark masses, in particular, at the physical point. Quantitative
investigation through lattice simulations with lighter quark masses are currently underway.
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and ILDG/JLDG [32] for providing gauge configurations. The numerical simulations have been
performed on Blue Gene/L at KEK, T2K at University of Tsukuba and SR16000 at YITP in Kyoto
University. This research is supported in part by MEXT Grant-in-Aid (20340047, 22540268),
Scientific Research on Innovative Areas (20105001, 20105003, 21105515), Specially Promoted
Research (13002001), JSPS 21·5985 and HPCI PROGRAM, the Large Scale Simulation Program
of KEK (09-23, 09/10-24) and the collaborative interdisciplinary program at T2K-Tsukuba (09a-
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