PROCEEDINGS

OF SCIENCE

Lattice calculation of neutral pion decay form factor
using two different methods

JLQCD Collaboration: Xu Feng®! Sinya Aoki?, Shoji Hashimoto?¢, Takashi
Kaneko?¢, Jun-ichi Noaki? and Eigo Shintanid

8High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan

bGraduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571,
Japan

€School of High Energy Accelerator Science, The Graduate University for Advanced Sudies
(Sokendai), Tsukuba 305-0801, Japan

dRIKEN-BNL Research Center, Upton, NY 11973-5000, USA

We perform a non-perturbative study of the two-photon dedangutral pion using 2 1 flavors of
overlap fermions at pion masses ranging fnrom= 540 to 300 MeV, at a lattice spaciag=0.11

fm and at a lattice size® x T /a* = 16° x 48. Using the all-to-all quark propagator technique,
we construct the relevant three-point functions. Using tifterent methods we compute the
m° — y*y* transition form factor in both space-like and time-like dairts. Extrapolating the form
factor to the on-shell photon limit, we find that the resuttati the two methods are consistent.

The XXIX International Symposiumon Lattice Field Theory - Lattice 2011
July 10-16, 2011
Sguaw Valley, Lake Tahoe, California

*Speaker.
TE-mail: xufeng@post.kek.jp

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Lattice calculation of neutral pion decay form factor using two different methods Xu Feng

1. Introduction

Being the lightest mesom® can not decay to other hadronic states. The principal decay
channel (with a branching ratio of 98.8%) uf is to a pair of the photons, which represents one
of the key processes in the anomaly sector of gauge fieldythdtre recent measurement of the
m° — yy decay width by the PrimEx experiment at JLab gives,, = 7.82(22) eV [1] and has
a fractional accuracy of only 2.8%. Such a precision levekesaher® decay to be the most
stringent test for the chiral anomaly of gauge theory antbitsiulation on the lattice.

On the theoretical side, the hadronic aspect ofrthe~ yy transition matrix element is con-
fined in the form factor functionZo,, (M2, p, p3), wheremy is the m° mass andp, > are the
photon momenta. In the case that the photons are on—sreltdrhstantoinow(rrﬁ, 0,0) directly
yields ther® — yy decay rate through the relatidnyo,, = (naénﬁ/4)§§ow(rrﬁ, 0,0), whered,
is the fine structure constant. Therefore, by compuﬁﬁgw(nﬁ, 0,0), we are able to compare the
theoretical values df ,, to the experimental measurements.

In the chiral limit, the on-shell photon form factcf ,,(0,0,0) is predicted by the Adler-
Bell-Jackiw (ABJ) anomaly [2, 3, 4] in terms of ttw? decay constantt, as 70,,(0,0,0) =
1/(41Fy), while some corrections from QCD are expected when the gioraissive or the photons
are off-shell. In low energy region the direct determinataf these QCD corrections is afflicted
with many difficulties since the computation of them is esisdlg a non-perturbative problem.
Lattice QCD provides a genuine non-perturbative methodgchwvban tackle these problems in
principle, using numerical simulations.

In the past, two lattice groups have undertaken effortsudysthe ° decay and the corre-
sponding results are reported in the proceedings [5, 6nThi$ work we calculatEnoW(rrﬁT, pf, pg)
usingN¢ = 2+ 1 overlap fermion ensembles with fixed topological chargenfdLQCD collab-
oration. As a preliminary calculation, we use two differemtthods to calculate the form factor
and check the consistency of the results. Such a study igldeethe future lattice calculation to
finally achieve a precise determinationrdf — yy transition form factor and pion decay width.

2. Form factor

The °yy transition form factotZ o, (M2, pf, p3) is defined through the matrix element

Ty PR, P3) =1 [ AX€PHQIT {1y (OHC(@)/Pus(Prp) . @)

whereqis ther® momentumps » are the photon momenta agl(x) is the electromagnetic vector
current. In EQ. (2.1Puv(P1, P2) = Euvaphf pg is a factor of Lorentz structure, induced by the
negative parity of thet.

Using the LSZ reduction formula and reducing tifestate one can rewrite Eq. (2.1) as

—_ o ) .
qz“i“m%n?Tq [ dixttz P EQIT (1,91, } Q) P (P, P2) . (2.2

where @y is the overlap amplitude, defined a@s = (1°(q)|°(0)|Q) = M2F/(2myq), with my g
the quark mass.
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Figure 1: Blue circles and red curves represent the momenta coveraekthod #1 and #2, respectively.

2.1 Method #1

Eq. (2.2) is originally defined in the Minkowski space-tinkerforming the Wick rotation, we
obtain a similar formula in the Euclidean space-time

Fr0,y(Q%,PE,PZ) =

% /d4x d4z e PXHOZ (T {iuX)jv(0)1°(Z)} |Q)/Puv(PL,P2) ,  (2.3)

whereP; ; andQ are Euclidean momenta and the interpolating opertéX), ju(Y) and °(Z)
are defined in the Euclidean space-time. We apply Eg. (2.8)ddattice QCD calculation. As
shown by the blue circles in Fig. 1, using Eqg. (2.3), we obthm form factor in the space-like
momentum region with photon moment, = —P7, < 0.

Note that in Eq. (2.2) the limig? — m? should be taken. However, in Eq. (2.3) the pion
momenta are always space-like and never hit the pion poletefdre the "form factor” defined in
Eq. (2.3) is that for an off-shell pion. In our calculation wencentrate on the smati?| region,
so that ther®® is not very far away from its pole and the off-shell amplituday give a reasonable
approximation to the on-shell form factor.

2.2 Method #2

Besides using Eq. (2.3) we can also make use of Ji and Jungfeoch# calculate the form
factor [8]. We analytically continue Eqg. (2.1) from the Minkski to Euclidean space-time. After
the continuation, we have

Frop 07, p) = [t et [dRe PHQIT (140 10(0.0} 7)) /Puv (pr.Pe) - (2.4)

In Eq. (2.4) the pion has momentum= (Er4,d), which satisfies the on-shell conditigf = m?.
The first photon has momentupa = (w, p1), where the photon energy is put by hand and can be
tuned continuously. According to the momentum consermatite second photon’s momentum is
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given asp; = (Eq— w,d— p1). Fixing the values for spatial momergandp and tuning the value
for w, we find that(p2, p3), with pf = w? — B2 andp3 = (Exq — w)? — (§— p1)?, forms continuous
contours on theépf, p%) plane. (See the red curves in Fig. 1 as an example.) With ampiate
choice forw, the photons can be space-like or time-like. Although fadggime-like, the photons
should not hit the poles of hadrons. Otherwise, the photatestmay mix with the hadron states
and it is not allowed to analytically continue Eq. (2.1) frahe Minkowski to Euclidean space-
time. To avoid such situation we keeﬁﬁz < mf, (or E2,. depending on quark masses), where the
upper limit refers to the hadron production threshold.

3. Lattice setup

In this work we use thé&l; = 2+ 1 overlap fermion configurations from the JLQCD collabo-
ration. Using the overlap fermions ensures the exact ceymaimetry at finite lattice spacings. The
results presented here are from a sequence of ensembles laftite spacing o= 0.11 fm and a
lattice size ol3 x T/a= 16° x 48. There are four pion masses used in the calculatigye= 540,
460, 380 and 300 MeV. At the smallest two pion masses with = 2.8 and 3.5, the finite size
effect might be significant to the data.

To calculate the form factor, we construct a three-pointetation function

Cun(ts 2.t = o (Bt (P2, ) (1) 31)

wherej,, is the Fourier-Transformed local vector current. The revaization factoiZy is added
to j, so that the lattice results can match the continuum thedrg.spatial momenta of the photons
and® are set ag; = (211/L)(0,0,0), B = (2717/L)(0,0,1) andd = (271/L)(0,0,1).

We use the all-to-all propagator technique to calculatectireelator. The low-lying eigen-
modes of the propagators are prepared in advance. The hideswaoe extracted from the stochas-
tic propagators. Using all-to-all propagators allows usatzulateCy, (t1,t2,t7) at any time slice
of t1, t, andt,; with good statistical precision. For more details we reéaders to Refs. [9, 10].

UsingCyy (t1,t2,t7) as an input, the method #1 gives

m2+Q? 1
@n T 1,02t
with Euclidean momentB; = (P1,Pio), P> = (P1,P20) andQ = (4, Qo). The method #2 yields

eiplotleipzotze_iQotnC“v(t17t27tﬂ)/P[JV(P]-? Pz) s (32)

c/rloyy(Q Pl ) I:)2 )

F 10y (MG, P2, P5) :/dtl ew(tltZ)Cuv(tl,tz,tn)/<zgnqeE"q 2= t")/Pu\/(Pl, P2), (3.3)
n7

with Minkowski momentap; = (w, p1), P2 = (Eng — w, P2) andq = (Exg,d).

4. Extract the ground state of 7°

To eliminate the pseudo-scalar (PS) excited-state effie¢tee method #2, we first look at the
correlatorCyy (t1,t2,t) in Eq. (3.1) at; =t =t. Atlarget —t;, where the excited-state effects are
highly suppressed, the correlators are dominated byfkground state as

_ _ 1 o
M G (.8, t) = Are S8, A= G g (0] (B1,0) v (P2, 0l T() . (4.1)
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Figure 2. An as a function of —t;; together with a Figure 3: At my; = 540 MeV Az 1(|t|) as a function
correlated fit to a constant value. oft fort > 0 andAq(|t]) as a function of fort < 0.

The corresponding results fét; = Cw(t,t,tn)/e*qu(t*t") as a function ot —t;; are shown in
Fig. 2. At larget —t,; we expect a plateau fa&k;, while at smallt —t,; such constant behavior can
be distorted by the excited-state effects. As shown in Figie2do not observe strong excited-state
effects. By choosing appropriate fitting windows, wejtto a constant value. The corresponding
fitting curves are shown in Fig. 2.

As a next step, we consider the casedfef t,. We keept; » >t to ensure the-state be the
initial state. LetAt = |t; —tp| andt = min{ty,t>}. At larget —t;, the correlators can be written as

lim  Cpy(t+At,t,ty) = Agg(At)e Bt for ¢y > ¢,

:_Izi:rTZ:Cw(t,t + At ty) = Aa(At)e Erat=t) | for tp >ty (4.2)
with
At (81) = G 5 (P, 80) 14 32 O @)
Ana(b8) = 52 (0 14(P2. 50 (B, O) (@) @3)

)

Given each value dfit, Ay 1 2(At) is a function ot —t,. We choose the appropriate fitting windows
to fit A1 2(At) to a constant value. Take the ensemble with= 540 MeV as an example. Using
the fitted results foA; 1 2(At) at differentAt, we make a plot in Fig. 3 foh;1(|t|) as a function of

t fort > 0 andAy2(|t|) as a function of for t < 0.

5. Resaults

Based on the observation that the PS excited-state effiectoasignificant, using the method
#1 we calculate the form factor directly from Eq. (3.2). é}; = 540 MeV the result for the
normalized form factor #%F,.%0,,(Q% P?,PZ) as a function op3 = —PZ is shown in Fig. 4.
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Figure4: At my= 540 MeV normalized form factor Figure5: At m; =540 MeV normalized form factor

calculated from method #1 as a function of momentalculated from method #2 as a function of momenta

p3. The momenta are restricted in space-like domajse. The momenta? are the time-like momenta.

When using the method #2, since we have extracted the acphigiandAr 1 2, we put them
into Eqg. (3.3) and calculate the form factor through

26 [ [ 0
ynoyv(mzzw P, ps) = qu (/0 dt e”Ar1(Jt]) +/7°o dt e(w_E"‘q)tAmZ(\t‘)) /Puv(p1, p2) (5.1)

Eg. (5.1) requires an integral interval bE (—, ). However, on lattice the available intervals
are always truncated due to the finite total time exfEntOur solution is as follows. At large
t|, although lattice data are unavailable, the long-distdredeavior of the integrand is known: It
is dominated by the ground state. Therefore by extrapgjdtie integrand to the largé region
we can accomplish the integration fram= —o tot = 4. At m; = 540 MeV the result for
ATPFn.Z 10, P2, P3) as a function opf is shown in Fig. 5.

After determining the form factors at diferent momem@, the next step is to extrapolate
them to the on-shell photon Iim'[ti2 = 0. Here we employ a fit ansatz

Frop (M, 7, P3) = ov Gy (PF)Gv (P3) +
3 & ((PD)"Gv(P3) + (P3)"Gv (P})) + 5 Cmn(PD™(P)" , (5.2)

whereGy (p?) = MZ /(M2 — p?) is the vector meson propagator witly the vector meson mass.
We fit the data of the form factor to Eq. (5.2) with four free graeters:cy, Cp, Cop andcyo. The
fitting curves are shown in Figs. 4 and 5. For both methods ##anthe fits work well.

The normalized on-shell form factors are shown as a funafor? in Fig. 6. We find that the
results from the two different methods are consistent.

Although the results reported here are still preliminamg ¢onsistency between the two differ-
ent methods suggests that our calculation is fairly retiablowever, as shown in Fig. 6, at smallest
pion mass, we find that normalized form factor is much lesn tha value predicted by the ABJ
anomaly, which is unity in the chiral limit. We will furthenvestigate this problem.
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Figure 6: Normalized on-shell form factor as a functionrof.. The results from the two different methods
are statistically consistent.
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