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1. Introduction

Being the lightest meson,π0 can not decay to other hadronic states. The principal decay
channel (with a branching ratio of 98.8%) ofπ0 is to a pair of the photons, which represents one
of the key processes in the anomaly sector of gauge field theory. The recent measurement of the
π0 → γγ decay width by the PrimEx experiment at JLab givesΓπ0γγ = 7.82(22) eV [1] and has
a fractional accuracy of only 2.8%. Such a precision level makes theπ0 decay to be the most
stringent test for the chiral anomaly of gauge theory and itsformulation on the lattice.

On the theoretical side, the hadronic aspect of theπ0 → γγ transition matrix element is con-
fined in the form factor functionFπ0γγ(m

2
π , p2

1, p2
2), wheremπ is the π0 mass andp1,2 are the

photon momenta. In the case that the photons are on-shell, the constantFπ0γγ(m
2
π ,0,0) directly

yields theπ0 → γγ decay rate through the relationΓπ0γγ = (πα2
e m3

π/4)F 2
π0γγ(m

2
π ,0,0), whereαe

is the fine structure constant. Therefore, by computingFπ0γγ(m
2
π ,0,0), we are able to compare the

theoretical values ofΓπ0γγ to the experimental measurements.
In the chiral limit, the on-shell photon form factorFπ0γγ(0,0,0) is predicted by the Adler-

Bell-Jackiw (ABJ) anomaly [2, 3, 4] in terms of theπ0 decay constant,Fπ , asFπ0γγ(0,0,0) =
1/(4π2Fπ), while some corrections from QCD are expected when the pion is massive or the photons
are off-shell. In low energy region the direct determination of these QCD corrections is afflicted
with many difficulties since the computation of them is essentially a non-perturbative problem.
Lattice QCD provides a genuine non-perturbative method, which can tackle these problems in
principle, using numerical simulations.

In the past, two lattice groups have undertaken efforts to study theπ0 decay and the corre-
sponding results are reported in the proceedings [5, 6, 7]. In this work we calculateFπ0γγ(m

2
π , p2

1, p2
2)

usingN f = 2+ 1 overlap fermion ensembles with fixed topological charge from JLQCD collab-
oration. As a preliminary calculation, we use two differentmethods to calculate the form factor
and check the consistency of the results. Such a study is useful for the future lattice calculation to
finally achieve a precise determination ofπ0 → γγ transition form factor and pion decay width.

2. Form factor

Theπ0γγ transition form factorFπ0γγ(m
2
π , p2

1, p2
2) is defined through the matrix element

Fπ0γγ(m
2
π , p2

1, p2
2) = i

∫

d4x eip1x〈Ω|T{ jµ(x) jν (0)}|π0(q)〉/Pµν(p1, p2) , (2.1)

whereq is theπ0 momentum,p1,2 are the photon momenta andjµ(x) is the electromagnetic vector

current. In Eq. (2.1)Pµν(p1, p2) = εµναβ pα
1 pβ

2 is a factor of Lorentz structure, induced by the
negative parity of theπ0.

Using the LSZ reduction formula and reducing theπ0-state one can rewrite Eq. (2.1) as

Fπ0γγ(m
2
π , p2

1, p2
2) =

lim
q2→m2

π

m2
π −q2

φπ

∫

d4x d4z eip1x−iqz〈Ω|T
{

jµ(x) jν(0)π0(z)
}

|Ω〉/Pµν(p1, p2) , (2.2)

whereφπ is the overlap amplitude, defined asφπ = 〈π0(q)|π0(0)|Ω〉 = m2
πFπ/(2mu,d), with mu,d

the quark mass.
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Figure 1: Blue circles and red curves represent the momenta covered bymethod #1 and #2, respectively.

2.1 Method #1

Eq. (2.2) is originally defined in the Minkowski space-time.Performing the Wick rotation, we
obtain a similar formula in the Euclidean space-time

Fπ0γγ(Q
2,P2

1 ,P
2
2 ) =

m2
π +Q2

φπ

∫

d4X d4Z e−iP1X+iQZ〈Ω|T
{

jµ(X) jν(0)π0(Z)
}

|Ω〉/Pµν(P1,P2) , (2.3)

whereP1,2 andQ are Euclidean momenta and the interpolating operatorjµ(X), jν(Y ) andπ0(Z)
are defined in the Euclidean space-time. We apply Eq. (2.3) tothe lattice QCD calculation. As
shown by the blue circles in Fig. 1, using Eq. (2.3), we obtainthe form factor in the space-like
momentum region with photon momentap2

1,2 =−P2
1,2 < 0.

Note that in Eq. (2.2) the limitq2 → m2
π should be taken. However, in Eq. (2.3) the pion

momenta are always space-like and never hit the pion pole. Therefore the "form factor" defined in
Eq. (2.3) is that for an off-shell pion. In our calculation weconcentrate on the small|q2| region,
so that theπ0 is not very far away from its pole and the off-shell amplitudemay give a reasonable
approximation to the on-shell form factor.

2.2 Method #2

Besides using Eq. (2.3) we can also make use of Ji and Jung’s method to calculate the form
factor [8]. We analytically continue Eq. (2.1) from the Minkowski to Euclidean space-time. After
the continuation, we have

Fπ0γγ(m
2
π , p2

1, p2
2) =

∫

dt eωt
∫

d3~x e−i~p1·~x〈Ω|T{ jµ(~x, t) jν(~0,0)}|π0(q)〉/Pµν(p1, p2) . (2.4)

In Eq. (2.4) the pion has momentumq = (Eπ,~q,~q), which satisfies the on-shell conditionq2 = m2
π .

The first photon has momentump1 = (ω ,~p1), where the photon energyω is put by hand and can be
tuned continuously. According to the momentum conservation, the second photon’s momentum is
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given asp2 = (Eπ,~q−ω ,~q−~p1). Fixing the values for spatial momenta~q and~p and tuning the value
for ω , we find that(p2

1, p2
2), with p2

1 = ω2−~p2
1 andp2

2 = (Eπ,~q −ω)2−(~q−~p1)
2, forms continuous

contours on the(p2
1, p2

2) plane. (See the red curves in Fig. 1 as an example.) With an appropriate
choice forω , the photons can be space-like or time-like. Although possibly time-like, the photons
should not hit the poles of hadrons. Otherwise, the photon states may mix with the hadron states
and it is not allowed to analytically continue Eq. (2.1) fromthe Minkowski to Euclidean space-
time. To avoid such situation we keepp2

1,2 < m2
ρ (or E2

ππ depending on quark masses), where the
upper limit refers to the hadron production threshold.

3. Lattice setup

In this work we use theN f = 2+1 overlap fermion configurations from the JLQCD collabo-
ration. Using the overlap fermions ensures the exact chiralsymmetry at finite lattice spacings. The
results presented here are from a sequence of ensembles witha lattice spacing ofa = 0.11 fm and a
lattice size ofL3×T/a4 = 163×48. There are four pion masses used in the calculation:mπ = 540,
460, 380 and 300 MeV. At the smallest two pion masses withmπL = 2.8 and 3.5, the finite size
effect might be significant to the data.

To calculate the form factor, we construct a three-point correlation function

Cµν(t1, t2, tπ) =
1
V
〈 jµ(~p1, t1) jν(~p2, t2)π0(−~q, tπ)〉 , (3.1)

where jµ is the Fourier-Transformed local vector current. The renormalization factorZV is added
to jµ so that the lattice results can match the continuum theory. The spatial momenta of the photons
andπ0 are set as~p1 = (2π/L)(0,0,0), ~p2 = (2π/L)(0,0,1) and~q = (2π/L)(0,0,1).

We use the all-to-all propagator technique to calculate thecorrelator. The low-lying eigen-
modes of the propagators are prepared in advance. The high modes are extracted from the stochas-
tic propagators. Using all-to-all propagators allows us tocalculateCµν(t1, t2, tπ) at any time slice
of t1, t2 andtπ with good statistical precision. For more details we refer readers to Refs. [9, 10].

UsingCµν(t1, t2, tπ) as an input, the method #1 gives

Fπ0γγ(Q
2,P2

1 ,P
2
2 ) =

m2
π +Q2

φπ

1
T ∑

t1,t2,tπ

eiP10t1eiP20t2e−iQ0tπCµν(t1, t2, tπ)/Pµν(P1,P2) , (3.2)

with Euclidean momentaP1 = (~p1,P10), P2 = (~p1,P20) andQ = (~q,Q0). The method #2 yields

Fπ0γγ(m
2
π , p2

1, p2
2) =

∫

dt1 eω(t1−t2)Cµν(t1, t2, tπ)/

(

φπ

2Eπ,~q
e−Eπ,~q(t2−tπ )

)

/Pµν(p1, p2) , (3.3)

with Minkowski momentap1 = (ω ,~p1), p2 = (Eπ,~q −ω ,~p2) andq = (Eπ,~q,~q).

4. Extract the ground state of π0

To eliminate the pseudo-scalar (PS) excited-state effectsin the method #2, we first look at the
correlatorCµν(t1, t2, tπ) in Eq. (3.1) att1 = t2 = t. At larget− tπ , where the excited-state effects are
highly suppressed, the correlators are dominated by theπ0-ground state as

lim
t−tπ→∞

Cµν(t, t, tπ) = Aπe−Eπ,~q(t−tπ ) , Aπ =
1
V

φπ

2Eπ,~q
〈Ω| jµ(~p1,0) jν (~p2,0)|π0(~q)〉 . (4.1)
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Figure 2: Aπ as a function oft − tπ together with a
correlated fit to a constant value.
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Figure 3: At mπ = 540 MeVAπ ,1(|t|) as a function
of t for t > 0 andAπ ,2(|t|) as a function oft for t < 0.

The corresponding results forAπ = Cµν(t, t, tπ)/e−Eπ,~q(t−tπ ) as a function oft − tπ are shown in
Fig. 2. At larget − tπ we expect a plateau forAπ , while at smallt − tπ such constant behavior can
be distorted by the excited-state effects. As shown in Fig. 2, we do not observe strong excited-state
effects. By choosing appropriate fitting windows, we fitAπ to a constant value. The corresponding
fitting curves are shown in Fig. 2.

As a next step, we consider the cases fort1 6= t2. We keept1,2 > tπ to ensure theπ0-state be the
initial state. Let∆t = |t1− t2| andt = min{t1, t2}. At larget − tπ , the correlators can be written as

lim
t−tπ→∞

Cµν(t +∆t, t, tπ) = Aπ,1(∆t)e−Eπ,~q(t−tπ ) , for t1 > t2 ,

lim
t−tπ→∞

Cµν(t, t +∆t, tπ) = Aπ,2(∆t)e−Eπ,~q(t−tπ ) , for t2 > t1 , (4.2)

with

Aπ,1(∆t) =
1
V

φπ

2Eπ,~q
〈Ω| jµ(~p1,∆t) jν(~p2,0)|π0(~q)〉 ,

Aπ,2(∆t) =
1
V

φπ

2Eπ,~q
〈Ω| jν(~p2,∆t) jµ(~p1,0)|π0(~q)〉 . (4.3)

Given each value of∆t, Aπ,1,2(∆t) is a function oft− tπ . We choose the appropriate fitting windows
to fit Aπ,1,2(∆t) to a constant value. Take the ensemble withmπ = 540 MeV as an example. Using
the fitted results forAπ,1,2(∆t) at different∆t, we make a plot in Fig. 3 forAπ,1(|t|) as a function of
t for t > 0 andAπ,2(|t|) as a function oft for t < 0.

5. Results

Based on the observation that the PS excited-state effects are not significant, using the method
#1 we calculate the form factor directly from Eq. (3.2). Atmπ = 540 MeV the result for the
normalized form factor 4π2FπFπ0γγ(Q

2,P2
1 ,P

2
2 ) as a function ofp2

2 =−P2
2 is shown in Fig. 4.
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Figure 4: At mπ = 540 MeV normalized form factor
calculated from method #1 as a function of momenta
p2

2. The momenta are restricted in space-like domain.
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Figure 5: At mπ = 540 MeV normalized form factor
calculated from method #2 as a function of momenta
p2

1. The momentap2
1 are the time-like momenta.

When using the method #2, since we have extracted the amplitudeAπ andAπ,1,2, we put them
into Eq. (3.3) and calculate the form factor through

Fπ0γγ(m
2
π , p2

1, p2
2) =

2Eπ,~q

φπ

(

∫ ∞

0
dt eωtAπ,1(|t|)+

∫ 0

−∞
dt e(ω−Eπ,~q)tAπ,2(|t|)

)

/Pµν(p1, p2) .(5.1)

Eq. (5.1) requires an integral interval oft ∈ (−∞,∞). However, on lattice the available intervals
are always truncated due to the finite total time extentT . Our solution is as follows. At large
|t|, although lattice data are unavailable, the long-distancebehavior of the integrand is known: It
is dominated by the ground state. Therefore by extrapolating the integrand to the large|t| region
we can accomplish the integration fromt = −∞ to t = +∞. At mπ = 540 MeV the result for
4π2FπFπ0γγ(m

2
π , p2

1, p2
2) as a function ofp2

1 is shown in Fig. 5.
After determining the form factors at diferent momentap2

1,2, the next step is to extrapolate
them to the on-shell photon limitp2

1,2 = 0. Here we employ a fit ansatz

Fπ0γγ(m
2
π , p2

1, p2
2) = cV GV (p2

1)GV (p2
2)+

∑
m

cm
(

(p2
1)

mGV (p2
2)+ (p2

2)
mGV (p2

1)
)

+∑
m,n

cm,n(p2
1)

m(p2
2)

n , (5.2)

whereGV (p2) = M2
V/(M

2
V − p2) is the vector meson propagator withMV the vector meson mass.

We fit the data of the form factor to Eq. (5.2) with four free parameters:cV , c0, c0,0 andc1,0. The
fitting curves are shown in Figs. 4 and 5. For both methods #1 and #2, the fits work well.

The normalized on-shell form factors are shown as a functionof m2
π in Fig. 6. We find that the

results from the two different methods are consistent.
Although the results reported here are still preliminary, the consistency between the two differ-

ent methods suggests that our calculation is fairly reliable. However, as shown in Fig. 6, at smallest
pion mass, we find that normalized form factor is much less than the value predicted by the ABJ
anomaly, which is unity in the chiral limit. We will further investigate this problem.
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Figure 6: Normalized on-shell form factor as a function ofm2
π . The results from the two different methods

are statistically consistent.
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