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1. Introduction

The problem of predicting total cross sections at high energy from first principles is one of
the oldest open problems of hadronic physics (see, e.g., [1] and references therein), not yet satis-
factorily solved in QCD. This problem is part of the more general problem of high–energy elastic
scattering at low transferred momentum, the so–called soft high–energy scattering. As soft high–
energy processes possess two different energy scales, the total center–of–mass energy squared s
and the transferred momentum squared t, smaller than the typical energy scale of strong interac-
tions (|t| . 1 GeV2� s), we cannot fully rely on perturbation theory. A genuine nonperturbative
approach in the framework of QCD has been proposed in [2] and further developed in a number
of papers (see, e.g., [1] for a list of references): using a functional integral approach, high–energy
hadron–hadron elastic scattering amplitudes are shown to be governed by the correlation function
(CF) of certain Wilson loops defined in Minkowski space. Moreover, as it has been shown in [3 –
6], such a CF can be reconstructed by analytic continuation from the CF of two Euclidean Wilson
loops, that can be calculated using the nonperturbative methods of Euclidean Field Theory.

In [7, 8] we have investigated this problem by means of numerical simulations in Lattice
Gauge Theory (LGT). Although we cannot obtain an analytic expression in this way, nevertheless
this is a first–principle approach that provides (within the errors) the true QCD expectation for
the relevant CF. In this contribution, after a survey of the nonperturbative approach to soft high–
energy scattering in the case of meson–meson elastic scattering, we will present our numerical
approach based on LGT, compare the numerical results to the existing analytic models, and discuss
the possibility to obtain indications of the rise of total cross sections directly from the lattice data.

2. High–energy meson–meson scattering and Wilson–loop correlation functions

We sketch here the nonperturbative approach to soft high–energy scattering (see [7] for a more
detailed presentation). The elastic scattering amplitudes of two mesons (taken for simplicity with
the same mass m) in the soft high–energy regime can be reconstructed, after folding with the appro-
priate wave functions, from the scattering amplitude M(dd) of two dipoles of fixed transverse sizes
~R1,2⊥, and fixed longitudinal–momentum fractions f1,2 of the two quarks in the two dipoles [9].
In turn, the dipole–dipole (dd) scattering amplitude is obtained from the (properly normalised) CF
of two Wilson loops in the fundamental representation, defined in Minkowski spacetime, running
along the paths made up of the quark and antiquark classical straight–line trajectories, and thus
forming a hyperbolic angle χ (' log(s/m2) at high energy). The paths are cut at proper times
±T as an IR regularisation, and closed by straight–line “links” in the transverse plane, in order to
ensure gauge invariance. Eventually, the limit T → ∞ has to be taken.

It has been shown in [3 – 6] that the relevant Wilson–loop CF can be reconstructed, by means
of analytic continuation, from the Euclidean CF of two Euclidean Wilson loops,

GE(θ ;T ;~z⊥;1,2)≡ 〈W̃ (T )
1 W̃

(T )
2 〉E

〈W̃ (T )
1 〉E〈W̃ (T )

2 〉E
−1 , W̃

(T )
1,2 ≡

1
Nc

tr
{

T exp
[
−ig

∮

C̃1,2

Ãµ(x̃)dx̃µ

]}
, (2.1)

where 〈. . .〉E is the average in the sense of the Euclidean QCD functional integral, and “1[2]” stand
for “~R1[2]⊥, f1[2]”. The Euclidean Wilson loops W̃

(T )
1,2 are calculated on the following straight–line
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paths,

C̃1 : X̃1q[q̄](τ) = z+
p̃1

m
τ + f q[q̄]

1 R̃1, C̃2 : X̃2q[q̄](τ) =
p̃2

m
τ + f q[q̄]

2 R̃2, (2.2)

with τ ∈ [−T,T ], and closed by straight–line paths in the transverse plane at τ = ±T . The four–
vectors p̃1 and p̃2 are chosen to be p̃1[2] = m([ ]±sin θ

2 ,
~0⊥,cos θ

2 ) (taking X̃4 to be the “Euclidean
time”), θ being the angle formed by the two trajectories, i.e., p̃1 · p̃2 = m2 cosθ . Moreover, R̃i =

(0,~Ri⊥,0) and z̃ = (0,~z⊥,0). We define also the CF with the IR cutoff removed as CE ≡ lim
T→∞

GE .

The dd scattering amplitude is then obtained from CE by means of analytic continuation as

M(dd)(s, t;1,2)≡−i 2s
∫

d2~z⊥ei~q⊥·~z⊥CE(θ →−iχ ∼
s→∞
−i log(s/m2);~z⊥;1,2) , (2.3)

where s ≡ (p1 + p2)
2 and t = −|~q⊥|2 (~q⊥ being the transferred momentum) are the usual Man-

delstam variables (for a detailed discussion on the analytic continuation see [6], where we have
shown, on nonperturbative grounds, that the required analyticity hypotheses are indeed satisfied).
In the following, without loss of generality [8], we will take the longitudinal–momentum fractions
f1,2 =

1
2 , and suppress the dependence on f1,2 in GE and CE .

3. Wilson–loop correlation functions on the lattice

The gauge–invariant Wilson–loop CF GE is a natural candidate for a lattice computation, but
the explicit breaking of O(4) invariance on a lattice requires special care. As straight lines on a
lattice can be either parallel or orthogonal, we are forced to use off–axis Wilson loops to cover a
significantly large set of angles [7]. To stay as close as possible to the continuum case, the loop
sides are evaluated on the lattice paths that minimise the distance from the continuum paths: this
can be easily accomplished by means of the well–known Bresenham algorithm [10]. The relevant
Wilson loops W̃L(~l‖;~r⊥;n) are then characterised by the position n of their center and by two 2D
vectors~l‖ and~r⊥, corresponding respectively to the longitudinal and transverse sides of the loop.
Setting W̃L1 ≡ W̃L(~l1‖;~r1⊥;d), d = (0, ~d⊥,0), and W̃L2 ≡ W̃L(~l2‖;~r2⊥;0), we define on the lattice

GL(~l1‖,~l2‖;X⊥)≡
〈W̃L1W̃L2〉
〈W̃L1〉〈W̃L2〉

−1, CL(l̂1‖, l̂2‖;X⊥)≡ lim
L1,L2→∞

GL(~l1‖,~l2‖;X⊥). (3.1)

Here X⊥ denotes collectively the relevant transverse variables, X⊥ = (~d⊥;~r1⊥,~r2⊥). Also, l̂i‖ ≡
~li‖/Li, where Li ≡ |~li‖| are defined to be the lengths of the longitudinal sides of the loops in lattice
units. In the continuum limit, where O(4) invariance is restored, we expect

GL(~l1‖,~l2‖;X⊥) '
a→0

GE(θ ;T1 =
aL1
2 ,T2 =

aL2
2 ;aX⊥), CL(l̂1‖, l̂2‖;X⊥) '

a→0
CE(θ ;aX⊥), (3.2)

where l̂1‖ · l̂2‖ ≡ cosθ defines the relative angle θ and a is the lattice spacing.
In [7, 8] we have performed a Monte Carlo calculation of GL for several values of the rel-

ative angle, various lengths and different configurations in the transverse plane. We used 30000
quenched configurations generated with the SU(3) Wilson action at β = 6.0, corresponding to
a' 0.1fm, on a 164 hypercubic lattice with periodic boundary conditions. This choice is made in
order to stay within the so–called “scaling window”: in this sense we are relying in an indirect way
on the validity of the relation (3.2) between Wilson–loop CFs on the lattice and in the continuum.
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Figure 1: (Left) The relevant Wilson–loop configuration. Using the O(4) invariance of the Euclidean theory
we have put p̃1 parallel to the x̃1 axis. (Right) Loop configuration in the transverse plane.

To keep the corrections due to O(4) invariance breaking as small as possible, we have kept
one of the two loops on–axis and we have only tilted the other one as shown in Fig. 1 (left). The
on–axis loop W̃L1 is taken to be parallel to the xE1 axis, ~l1‖ = (L1,0), and of length L1 = 6,8,
and we have used two sets of off–axis loops W̃L2 tilted at cotθ = 0,±1,±2. We have used loops
with transverse size |~r1⊥| = |~r2⊥| = 1 in lattice units; the loop configurations in the transverse
plane are those illustrated in Fig. 1 (right), namely ~d⊥ ‖~r1⊥ ‖~r2⊥ (which we call “zzz”) and
~d⊥ ⊥~r1⊥ ‖~r2⊥ (“zyy”). We have also measured the orientation–averaged quantity (“ave”) defined
as C ave

E (θ ;~z⊥; |~R1⊥|, |~R2⊥|)≡
∫

dR̂1⊥
∫

dR̂2⊥CE(θ ;~z⊥;~R1⊥,~R2⊥), where
∫

dR̂i⊥ stands for integra-
tion over the orientations of ~Ri⊥. The lattice version of this equation is easily recovered for even
(integer) values of the transverse sizes; in our particular case, |~ri⊥| = 1, we have to use a sort of
“smearing” procedure, averaging nearby loops as depicted in Fig. 1 (right).

Since we are interested in the limit T → ∞, we have to perform it on the lattice by looking
for a plateau of GL plotted against the loop lengths L1,2. On a 164 lattice it is difficult to have a
sufficiently long loop while at the same time avoiding finite size effects, and at best we can push
the calculation up to L = 8. Nevertheless, our data show that GL is already quite stable against
variations of the loop lengths at L1,2 ' 8 (at least for θ not too close to 0◦ or 180◦, where it is
expected to diverge due to its relation with the static dd potential, see [7, 8]) and so we can take the
data for the largest loops available as a reasonable approximation of CL.

We have considered the values d = 0,1,2 for the distance between the centers of the loops: as
expected, the CFs vanish rapidly as d increases, thus making the calculation with our simple “brute
force” approach very difficult at larger distances.

4. Comparison with analytical results and the problem of total cross sections

As already pointed out in the Introduction, numerical simulations of LGT can provide the
Euclidean CF only for a finite set of θ–values, and so its analytic properties cannot be directly
attained; nevertheless, they are first–principles calculations that give us (within the errors) the true
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Figure 2: (Left) Comparison of the lattice data to the SVM expression (4.1), with KSVM calculated according
to [11] (solid line), or determined through a best–fit (for the “zzz” and “zyy” cases only, dotted line) at d = 1.
(Right) Comparison of the lattice data to the ILM expression (4.2) with KILM calculated according to [8]
(dotted, dashed, and solid line, corresponding to different values of the model parameters), or determined
through a best–fit (sparse dotted line) for the “zzz” and “zyy” cases at d = 1.

QCD expectation for this quantity. Approximate analytic calculations of this same CF have then
to be compared with the lattice data, in order to test the goodness of the approximations involved.
This can be done either by direct comparison, when a numerical prediction is available, or by
fitting the lattice data with the functional form provided by a given model. The Euclidean CFs we
are interested in have been evaluated in the Stochastic Vacuum Model (SVM) [11], in the Instanton
Liquid Model (ILM) [12, 8], and using the AdS/CFT correspondence [13]: the comparison of our
data with these analytic calculations is not, generally speaking, fully satisfactory.

In the SVM [11] the Wilson–loop CF is given by the expression

C
(SVM)

E (θ) =
2
3

exp
(
−1

3
KSVM cotθ

)
+

1
3

exp
(

2
3

KSVM cotθ

)
−1 , (4.1)

where KSVM is a function of~z⊥, ~R1⊥ and ~R2⊥ only, given in [11], that we have used to evaluate
(4.1) numerically in the relevant cases. The SVM prediction (4.1) agrees with our lattice data in
a few cases, at least in the shape and in the order of magnitude, but, in general, it is far from
being satisfactory, see Fig. 2 (left). The same conclusion is reached if one performs instead a one–
parameter (KSVM) best–fit with the given expression: the values of the chi–squared per degree of
freedom (χ2

d.o.f.) of this and the other fits that we have performed are listed in Table 1.
The ILM predicts the following functional form of the CF [12, 8],

C
(ILM)

E (θ) =
KILM

sinθ
; (4.2)

in particular, a well–defined numerical prediction for KILM has been obtained in [8]. The ILM
prediction turns out to be more or less of the correct order of magnitude in the range of distances

5



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
1
)
1
5
5

Hadron-hadron total cross sections and soft high-energy scattering on the lattice Matteo Giordano

χ2
d.o.f. d = 0 d = 1 d = 2

zzz/zyy ave zzz zyy ave zzz zyy ave
SVM 51 - 16 12 - 1.5 2.2 -
pert 53 34 16 13 13 1.5 2.2 4.5
ILM 114 94 14 15 45 0.45 0.35 1.45
ILMp 20 9.4 0.54 0.92 1.8 0.13 0.12 0.19
AdS/CFT 40 - 1 0.63 - 0.14 0.065 -

Table 1: Chi–squared per degree of freedom for a best–fit with the indicated function.

considered, at least around θ = π

2 , but it does not match properly the lattice data; the same mismatch
is seen also in a best–fit with Eq. (4.2), see Fig. 2 (right). Moreover, the ILM prediction seems to
overestimate the correlation length which sets the scale for the rapid decrease of the CF with the
distance between the loops: this is also supported by the comparison of the prediction for the
instanton–induced dd potential Vdd with some preliminary numerical results on the lattice [8]. It
is worth noting that largely improved best–fits (see Table 1) are obtained by combining Eq. (4.2)
with the functional form C

(pert)
E (θ) = Kpert(cotθ)2, corresponding to the leading–order result in

perturbation theory [14, 4, 11], into the following expression, C
(ILMp)

E (θ) =
KILMp
sinθ

+K′ILMp(cotθ)2.
Finally, we have tried a best–fit with the expression obtained through AdS/CFT for the N = 4

SYM theory at large Nc, large ’t Hooft coupling and large distances between the loops [13]:

C
(AdS/CFT)

E (θ) = exp
{

K1

sinθ
+K2 cotθ +K3 cosθ cotθ

}
−1 . (4.3)

Taking into account that it is a three–parameter best–fit, even this one is not satisfactory: best–fits
with QCD–inspired expressions with only two parameters, like, e.g., the ILMp expression [or some
appropriate modification of the SVM expression (4.1)] give smaller χ2

d.o.f. (see Table 1).
As an important side remark, we note that our data show a clear signal of C–odd contributions

in dd scattering, which are related through the crossing–symmetry relations [5] to the antisym-
metric part of CE(θ) with respect to θ = π

2 . An asymmetry is present in the “zzz” and “zyy”
tranverse configurations (C ave

E is trivially symmetric), thus signalling the presence of odderon con-
tributions to the dd scattering amplitudes. Although these C–odd contributions are averaged to zero
in meson–meson scattering (at least in our model), they might play a non–trivial role in hadron–
hadron processes in which baryons and antibaryons are also involved.

As we have said in the Introduction, the main motivation in studying soft high–energy scatter-
ing is that it can lead to a resolution of the total cross section puzzle. From this point of view, a
satisfactory comparison of the lattice data with the SVM or the ILM would not have helped, since
they yield constant or vanishing cross sections at high energy, as it can be seen by using Eqs. (2.3)
and the optical theorem. An ambitious question that one can ask at this point is if the lattice data are
compatible with rising total cross sections. An answer can in principle be obtained by performing
best–fits to the lattice data with more general functions, leading to a non–trivial dependence on en-
ergy. This approach requires special care, because of the analytic continuation necessary to obtain
the physical amplitude from the Euclidean CF: one has therefore to restrict the set of admissible
fitting functions by imposing physical constraints (e.g., unitarity).

In this framework, a possible strategy is suggested by the improvement of best–fits achieved
with the ILMp expression: the idea is to combine known QCD results and variations thereof.
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As an example, one could consider exponentiating two–gluon exchange and the one–instanton
contribution (i.e., the ILMp expression), and supplementing it with a term which could yield a rising
cross section, e.g., C

(rise)
E = exp{C (ILMp)

E }exp{Arise(b)
(

π

2 −θ
)4
(cotθ)2}−1. Such an expression

yields an amplitude respecting unitarity if Arise(b) > 0 for large b = |~z⊥|, and leads to the limit
behaviour ∼ (logs)2 allowed by the Froissart bound if Arise(b)∼ b−4 for large b.

Another possible strategy is suggested by the AdS/CFT expression (4.3): one can try to adapt
to the case of QCD the analytic expressions obtained in related models, such as N = 4 SYM.
As it has been shown in [15], by combining the knowledge of the various coefficient functions
Ki in (4.3) at large b [13] with the unitarity constraint in the small–b region, a non–trivial high–
energy behaviour for the dd total cross section in N = 4 SYM can emerge (including a pomeron–
like behaviour σ ∼ s1/3). Although of course Eq. (4.3) is not expected to describe QCD, it is
sensible to assume in this case a similar functional form (basically assuming the existence of the
yet unknown gravity dual for QCD). Assuming moreover that the known power–law behaviour of
the Ki’s (expected for a conformal theory) goes over into an exponentially damped one (expected for
a confining theory), in particular K3→ ce−µb, one obtains a rising total cross section proportional
to the limit behaviour ∼ (logs)2.

It seems then worth investigating further the dependence of the CFs on the relative distance
between the loops, as well as on the dipole sizes, as they could combine non–trivially with the
dependence on the relative angle: these and other related issues (including the above–mentioned
more general best–fits) are currently under study [16], and will be addressed in future works.

References

[1] S. Donnachie, G. Dosch, P. Landshoff and O. Nachtmann, Pomeron Physics and QCD (Cambridge
University Press, Cambridge, 2002).

[2] O. Nachtmann, Ann. Phys. 209 (1991) 436.

[3] E. Meggiolaro, Z. Phys. C 76 (1997) 523; Eur. Phys. J. C 4 (1998) 101; Nucl. Phys. B 625 (2002) 312.

[4] E. Meggiolaro, Nucl. Phys. B 707 (2005) 199.

[5] M. Giordano and E. Meggiolaro, Phys. Rev. D 74 (2006) 016003; E. Meggiolaro, Phys. Lett. B 651
(2007) 177.

[6] M. Giordano and E. Meggiolaro, Phys. Lett. B 675 (2009) 123.

[7] M. Giordano and E. Meggiolaro, Phys. Rev. D 78 (2008) 074510.

[8] M. Giordano and E. Meggiolaro, Phys. Rev. D 81 (2010) 074022.

[9] H.G. Dosch, E. Ferreira and A. Krämer, Phys. Rev. D 50 (1994) 1992.

[10] J.E. Bresenham, IBM Sys. Jour. 4 (1965) 25.

[11] A.I. Shoshi, F.D. Steffen, H.G. Dosch and H.J. Pirner, Phys. Rev. D 68 (2003) 074004.

[12] E. Shuryak and I. Zahed, Phys. Rev. D 62 (2000) 085014.

[13] R.A. Janik and R. Peschanski, Nucl. Phys. B 565 (2000) 193.

[14] A. Babansky and I. Balitsky, Phys. Rev. D 67 (2003) 054026.

[15] M. Giordano and R. Peschanski, JHEP 05 (2010) 037.

[16] M. Giordano, E. Meggiolaro and N. Moretti, work in progress.

7


